
Secure Vehicle Communication

Deliverable 2.1-App.A

Baseline Security Specification

Project: Sevecom
Project Number: IST-027795
Deliverable: D2.1-App.A
Title: Baseline Security Specification
Version: v1.2
Confidentiality: Public Part of the Sixth
Author: Frank Kargl (editor) Framework Programme
Date: 10.04.2009 Funded by the EC -DG INFSO

Control Sheet

Version History
Version
number

Date Main author Summary of changes

0.1 16.04.2007 Frank Kargl Initial version of the document
0.2 21.12.2007 Frank Kargl Extended structure and included

additional content
0.3 11.02.2008 All partners integrated additional contribu-

tions
0.4 13.02.2008 All partners peer review of components
1.0 14.02.2008 Frank Kargl prepared version for submission
1.1 30.06.2008 Frank Kargl draft for next version
1.2 10.07.2008 Frank Kargl implementation basis
1.3 15.11.2008 All partners revision based on implementa-

tion progress
1.4 31.03.2009 All partners revision for review meeting
2.0 10.04.2009 Frank Kargl final version for submission
Approval

Name Date
Prepared Frank Kargl 10.04.2009
Reviewed All Project Partners 12.04.2009
Authorized Antonio Kung 14.04.2009
Circulation
Recipient Date of submission
Project Partners 15.04.2009
European Commission 15.04.2009

2

Contents

1 General Overview 7
1.1 Introduction . 7
1.2 Glossary . 8
1.3 Notation . 8

2 Security Manager 10
2.1 Overview . 10
2.2 Hooking Component . 10

2.2.1 Purpose of component . 10
2.2.2 Interfaces and Services . 10
2.2.3 Description . 11

2.3 Configuration Component . 11
2.3.1 Purpose of component . 11
2.3.2 Prerequisites . 11
2.3.3 Interfaces and Services . 11
2.3.4 Description . 12
2.3.5 Performance . 13
2.3.6 Discussion . 13

2.4 Dispatcher Component . 13
2.4.1 Purpose of component . 13
2.4.2 Prerequisites . 13
2.4.3 Interfaces and Services . 13
2.4.4 API for incoming messages . 15
2.4.5 Description . 16

3 Identification and Trust Management Module 18
3.1 Overview . 18
3.2 Identification Management . 18

3.2.1 Purpose of component . 18
3.2.2 Prerequisites . 18
3.2.3 Interfaces and Services . 19
3.2.4 Description . 19
3.2.5 Performance . 20
3.2.6 Related Work . 20
3.2.7 Discussion . 20

3.3 Trust Management Component . 20

3

Contents

3.3.1 Purpose of component . 20
3.3.2 Prerequisites . 20
3.3.3 Interfaces and Services . 21
3.3.4 Description . 23
3.3.5 Performance . 25
3.3.6 Related Work . 25
3.3.7 Discussion . 26

3.4 Revocation Management . 26
3.4.1 Purpose of component . 26
3.4.2 Prerequisites . 26
3.4.3 Interfaces and Services . 26
3.4.4 Description . 27
3.4.5 Performance . 28
3.4.6 Related Work . 28
3.4.7 Discussion . 28

4 Privacy Management Module 29
4.1 Overview . 29
4.2 Pseudonym Management Component 29

4.2.1 Purpose of component . 29
4.2.2 Prerequisites . 29
4.2.3 Interfaces and Services . 30
4.2.4 Description . 31
4.2.5 Performance . 34
4.2.6 Related Work . 34
4.2.7 Discussion . 34

4.3 Pseudonym Application Component . 35
4.3.1 Purpose of component . 35
4.3.2 Prerequisites . 35
4.3.3 Interfaces and Services . 35
4.3.4 Description . 36
4.3.5 Performance . 37
4.3.6 Discussion . 37

5 Secure Communication Module 38
5.1 Overview . 38
5.2 Secure Beaconing Component . 38

5.2.1 Purpose of component . 38
5.2.2 Prerequisites . 39
5.2.3 Interfaces and Services . 39
5.2.4 Description . 40
5.2.5 Performance . 43
5.2.6 Related Work . 43
5.2.7 Discussion . 44

4

Contents

5.3 Secure Flooding Component . 45
5.3.1 Purpose of component . 45
5.3.2 Prerequisites . 45
5.3.3 Interfaces and Services . 46
5.3.4 Description . 46
5.3.5 Performance . 51
5.3.6 Discussion . 51

5.4 Secure Routing Component . 52
5.4.1 Purpose of component . 52
5.4.2 Prerequisites . 52
5.4.3 Interfaces and Services . 53
5.4.4 Description . 54
5.4.5 Performance . 56
5.4.6 Discussion . 57

6 In-car Security Module 58
6.1 Overview . 58

6.1.1 Interfaces and Services . 59
6.2 In-Car Security Firewall Component . 60

6.2.1 Purpose of component . 60
6.2.2 Prerequisites . 61
6.2.3 Interfaces and Services . 61
6.2.4 Description . 61
6.2.5 Performance . 62
6.2.6 Related Work . 62
6.2.7 Discussion . 62

6.3 In-Car Security Module Intrusion Detection System 62
6.3.1 Purpose of component . 62
6.3.2 Prerequisites . 63
6.3.3 Interfaces and Services . 63
6.3.4 Description . 63
6.3.5 Performance . 64
6.3.6 Related Work . 64
6.3.7 Discussion . 64

7 Crypto Support Module 65
7.1 Overview . 65
7.2 OBU Crypto Component . 66

7.2.1 Purpose of component and prerequisites 66
7.2.2 Interfaces and Services . 66

7.3 HSM Component . 69
7.3.1 Purpose of component . 69
7.3.2 Prerequisites . 69
7.3.3 Interfaces and Services . 70

5

Contents

7.3.4 Description . 71

8 Bibliography 90

6

1 General Overview

1.1 Introduction

The overall system architecture is described in SeVeCom Deliverable 2.1 and not re-
peated here. It is assumed that the reader is familiar of this document.

The SEVECOM baseline security architecture consists of multiple modules that each
contribute a specific security functionality. The objective of this document is to de-
scribe all modules and components with a sufficient level of detail so that components
and interfaces are consistently defined and the same level of details is provided for
each mechanism. This involves naming conventions, consistent notations as well as a
repository of names.

The specification of components follows the listed criteria:

• The specification should be complete enough so that the implementation does
not need to take any design decisions (e.g. the fields and semantic of the certifi-
cate data structure should be described).

• The specification should separate the description from the mechanism (e.g. store
the certificate) from comments on the mechanism (e.g. “the reason for doing this
is to prevent man in the middle attacks . . . ”).

• The specification should not include unnecessary decisions that can be left to
the implementer (e.g. format of internal data structures, or if we use an existing
standard, explaining fields that are irrelevant to the mechanism).

• The specification should be maintainable, i.e. problems with the specification
should be easily modifiable (e.g. do not need to read 20 lines of text to figure
out where to make a change), and easily extendible (e.g. we should be able to
change easily a section because there is a decision to change an algorithm).

Component descriptions can be created in an iterative process where the level of de-
tails provided is increased over time. Details for the creation process timeline are
annotated in the component template.

7

1 General Overview

1.2 Glossary

Here is an alphabetically sorted list of terms and acronyms used throughout this doc-
ument:

API: Application Programming Interface
CA: Certificate Authority
CALM: Continuous Air interface for Long and Medium distance
CRL: Certificate Revocation List
DSRC: Digital Short Range Communication
DMV: Department of Motor Vehicles
ECDSA: Elliptic Curve Digital Signature Algorithm
ECU: Electronic Control Unit
GPS: Global Positioning System
HSM: Hardware Security Module
IVC: Inter-Vehicular communication (equal to V2V + V2I)
ITS: Intelligent Transport System
PKI: Public Key Infrastructure
OBU: Onboard Unit
QoS: Quality of Service
RSI: Roadside Infrastructure
RSU: Roadside Unit
R2V: Roadside to Vehicle
TOC: Transportation Operation Centre
TCU: Telematics Control Unit
TTL: Time To Live
TESM: Tamper Evident Security Module
VANET: Vehicle Adhoc Network
V2V: Vehicle to Vehicle communication
V2I: Vehicle to Infrastructure communication
VC: Vehicular Communication
VIN: Vehicle Identification Number
VSCC: Vehicle Safety Communication Consortium

1.3 Notation

Throughout this document, we use the following consistent notation rules.

8

1 General Overview

General naming conventions
X, Y , Z network entities (no distinction between

vehicles and RSU)
V an unnamed vehicle
VX , VY , VZ vehicles denoted as X, Y , and Z
RSU an unnamed roadside unit
RSUX , RSUY , RSUZ roadside units denoted as X, Y , and Z
TComponent .method(Ua,
constV b)

calling “method” in “Component” providing
arguments a and b of types U and V . The
return value is of type T

ComponentName,
longMethodName()

names should adhere to the Java naming
conventions

| concatenation
Cryptographic naming conventions
KXY symmetric key shared between X and Y
PKX asymmetric public key of X, can also be used

as signature verification key
SKX asymmetric private key of X, can also be used

as signature generation key
data generic data, e.g. message content
Cryptographic operations
byte[] = signSKX

(byte[]data) signature created by X over data
bool = verPKX

(byte[]s, byte[]d) verifies if s is a valid signature over d created
with SKX

Table 1.1: Notation

9

2 Security Manager

2.1 Overview

The Security Manager is reponsible for overall system organization, instantiation and
configuration of components, hooking of the security subsystem into the communica-
tion stack, and dispatching of (some) calls between components.

First of all, it is responsible for the configuration of the security components and for their
instantiation. In addition, it acts as an interface between security components, mainly
between the Secure Communication components (e.g. Secure Beaconing component)
and the components managing credentials like ID-Management component, Pseudo-
nym Application component etc.. One of the objectives is to encapsulate logically close
operations that are used by multiple other components. This dispatching functionality
both offers and requires various services to and from other security components.

2.2 Hooking Component

2.2.1 Purpose of component

The hooking component implements the Inter Layer Proxies (ILPs), which are used to
realise the hooking mechanism as described in chapter 5.5 of the SeVeCom Deliver-
able 2.1. Therefore one or multiple ILPs are inserted between the layers of the existing
network stack implementation. After registering a component to an ILP, incoming mes-
sages are passed to the component, which is able to modify or drop the message. If
the message is not dropped, it continues travelling through the stack.

2.2.2 Interfaces and Services

The interface, a component has to implement:

virtual int eventHandler(C2xIlpMessageEvent* event, Message** message)

The method to register a component to an ILP:

10

2 Security Manager

bool registerHandler(C2xIlpEventHandler* client, C2xIlpMessageEvent* event)

2.2.3 Description

For registering a component to a ILP, it has to implement the eventHandler interface
and to call the registerEvent method from the specific ILP instance. The registerEvent
method takes two parameters, the first (C2XIlpEventHander*) is the object, which im-
plements the eventHandler method that will be called in case of a specific event. The
second parameter (messageEvent*) consists of a event object, that specifies the exact
circumstances, on which an event shall be triggered. The event object specifies the
layer, the queue (input, output, forward) and the message type that have to fit to a
bypassing message, so that the eventHandler method is called. In this case the ILP
in turn creates a event object that also contains the actual layer, the queue and the
message type and passes it with the specific message to the eventHandler. Due to
this approach, the eventHandler can distinguish between different situations, so it is
possible to register one eventHandler at different ILPs or for different message types.
The message which is passed is accessible via a double pointer, so the component
can replace it and pass it back to the ILP. In addition, a return value is returned, which
indicates whether the message was modified, if it should be dropped or passed to the
following layer.

To execute a command or insert a self generated messages into the stack, the sendMes-
sageUp or sendMessageDown methods of a ILP can be called, that directly pass the
message to the next layer.

2.3 Configuration Component

2.3.1 Purpose of component

The security policies are defined in a configuration file which is read by the security
manager at initialisation time. This file contains information for all the security compo-
nents the security manager must configure.

2.3.2 Prerequisites

2.3.3 Interfaces and Services

Configuration file: For every security component, this file specifies:

• The name of the library that contains the binary code of the component,

11

2 Security Manager

• Optionally some parameters that must be passed to the constructor of the com-
ponent,

• A list of types for incoming messages that concern this component. These types
will allow the communication stack to know what incoming messages must be
passed to the component,

• Types for outgoing messages that concern this component. This filters will allow
the communication stack to know what outgoing messages must be passed to
the component.

A BNF description of this file is given next.

file ::= list-of-components
list-of-components ::= empty | component-desc | component-desc list-of-components
component-desc ::= component library filters links
component ::= ’[’ SYMBOL ’]’
library ::= ’lib’ ’=’ SYMBOL
filters ::= empty | filter | filter filters
filter ::= direction list-of-ids
list-of-ids ::= empty | id | id list-of-ids
links ::= empty | SYMBOL | SYMBOL links

2.3.4 Description

The tasks realised by the security manager at initialisation time are depicted in the
figure below. First, it reads and analyses the configuration file. Second, for each
component specified in this file, it loads its code into memory and instantiates it by
calling its constructor eventually with its parameters (if provided). Third, it uses the
types attached to the component for knowing what callback must be called for the
messages which match these types. In order to do that, it calls the method getCallback
of the component with the types it has just read as parameters. Forth, it registers the
callbacks it has obtained at the previous step. For example in the figure below one can
see that the method getCallback of the Beacon component has returned the callback
B_send for the messages the types of which belong to the list types1. This callback is
then registered to the stack at the right level. Further, each time a message the type of
which is in the list types1 is to be sent, the stack calls the B_send callback. The same
goes for the B_recep callback. For a component there can be as many number of list
of types as necessary. Each list is associated with a callback.

12

2 Security Manager

2.3.5 Performance

2.3.6 Discussion

Security issues: Some precautions are necessary for this configuration process. The
security manager must verify the integrity of the configuration file and of the binary
codes of the components to load. Signatures can be used for these verifications. The
latter will undertaken by the crypto module. Therefore this module must be already
running i.e it must be launched before the security manager. Its code may be (or must
be) stored in a TRSM (Tamper Resistant Security Module).

2.4 Dispatcher Component

2.4.1 Purpose of component

All security modules are registered. Each time a message is to be sent or is received,
the corresponding callback (i.e. attached to this type of message) is called. This
callback will then use the services of the security module in order to add signature for
outgoing messages and verify signature for incoming messages.

2.4.2 Prerequisites

Dispatches methods among security components, and thus requires all components
for which it is configured to relay calls.

2.4.3 Interfaces and Services

API for outgoing messages

public SMGR_return_code createMessageSignature(AbstractSecureMessage& msg);

In order to be to sure that the timestamp and the certificate are not altered before the
insertion of the signature the 3 operations setTimeStamp, setCertificate and setSigna-
ture must be done in one single call. This is coherent with the deliverable 2.1 version
2.0 final (page 56). But this in contradiction with the baseline (page 26). For this rea-
son the method calls sequentially these three methods in this order. Is the position of
the vehicle also concerned by this problem ?

13

2 Security Manager

public checkPosition(AbstractSecureMessage& msg);

It checks the presence a valid position in the message. If no position is present it will
ask the GPS module for a position and insert it in the message. The method can be
implemented in the secure manager or in the network layer. In the second case the
previous question is not accurate.

private TimeStamp getCurrentTime();

This method returns the current time out of the tampered evident security module.

private void setTimestamp(AbstractSecureMessage& msg);

This method calls the method GetCurrentTime and stores the result in the message. It
returns OK in case of success and SMGR_NOCLOCK_DEVICE if the getCurrentTime
method cannot return a time stamp.

private void setSignature(AbstractSecureMessage& msg);

This method calculates a signature for the message. For this operation a certificate is
necessary. Therefore this method will call the getCertificate method. What certificate
will be use for the signature ? long time certificate or pseudonym ? On what criteria
this choice will be made ?

private Certificate& getCertificate(MessageBase msg);

This method returns a certificate to use for the message to send. It can be a pseudo-
nym or a long term certificate. On what basis the choice will be made ?

private void setCertificate(AbstractSecureMessage& msg);

This method calls the getCertificate method and store the result in the message.

14

2 Security Manager

2.4.4 API for incoming messages

public SMGR_return_code verifyMessage(AbstractSecureMessage& msg);

On reception of a message a certain number of verifications are required for security
purpose. These verifications are done by the following internal methods : verifyCer-
tificate, verifyAuthentication, verifyTimeStamp (for Beaconing). It returns SMGR_OK
in case of success and an error code otherwise. This error code is returned by the
internal method which has detected the error. See below the descriptions of these
methods.

private SMGR_return_code verifyCertificate(AbstractSecureMessage& msg);

This method verifies that the sender of the message is actually a valid participant of
the network. It verifies that the certificate of the sender is valid and still in use (e.g
not revocated). It returns SMGR_OK in case of success and otherwise it returns the
following error code

• SMGR_INVALID_CERTIFICAT when the data does not correspond to a certifi-
cate or if it is ill formed.

• SMGR_REVOCATED_CERTIFICATE when the certificate corresponds to a re-
vocated certificate.

• SMGR_EXPIRED_CERTIFICATE when the validity period of the certificate has
expired.

private SMGR_return_code verifyAuthentication(AbstractSecureMessage& msg);

This method verifies that the identified sender has effectively sent the message. This
verification allows at the same time to ensure that the message has not been altered.
It returns SMGR_OK in case of success and the following error codes otherwise

• SMGR_AUTHENTICATION_FAILURE if the sender is not the expected one of if
the message has been altered.

• SMGR_ILL_FORMED_SIGNATURE if the signature is ill formed

private SMGR_return_code verifyTimeStamp(AbstractSecureMessage& msg);

This verifies that the data is up-to-date i.e. it verifies that the timestamp is valid and is
not outdated. It returns SMGR_OK in case of success and otherwise

• MSGR_INVALID_TIMESTAMP if the timestamp is found invalid

• MSGR_OUTDATED_MSG if the corresponding message if outdated.

15

2 Security Manager

Base type for all the message using secure communication

In order to secure messages, we need a common base class SecureMessage which
provides the following methods : Access and modification of security related fields of
the message.

• void setTimeStamp(typeTimeStamp& time) : for setting the timestamp field.

• void getTimeStamp(TimeStamp& time) : for getting the timestamp out of the
message.

• void setCertificate(Certificate& cert) : includes the certificate cert in the corre-
sponding field of the message.

• void getCertificate(Certificate& cert) : extracts the certificate out of the message.

• void setSignature(Signature& sign) : adds the signature in the message

• void getSignature(Signature& sign) : extracts the signature.

In order to make its job properly, the crypto support module needs a array. Therefore
a function is needed for putting all the necessary information in a array before calling
the crypto support module. This allows the cryptographic part to be independent of
the physical arrangement of the data in the packet. Only the derivate class (Secure-
BeaconMessage for example) knows what data are covered by the signature, so the
method need to be purely virtual.

• virtual void getSignedPart(UINT8 *p_signedData, UINT8 *p_length) = 0

2.4.5 Description

Outgoing messages

The steps that are taken to process outgoing messages:

1. a message is to be sent

2. the corresponding callback is called

3. the callback requests the security manager to add all information needed for
security purpose

4. the security manager asks the pseudonym manager for getting a pseudonym

5. the security manager requests the crypto support module to add timestamp and
signature

6. the result is returned

16

2 Security Manager

Before sending the message, the MAC address is changed in order to reflect the new
pseudonym.

Incoming messages

The steps that are taken to process incoming messages:

1. a message is received

2. the corresponding callback is called

3. the callback requests the security manager to verify the signature

4. the security manager calls the trust management module in order to verify the
certificate

5. the security manager calls the crypto support module in order to verify the mes-
sage

6. the result is returned

17

3 Identification and Trust Management
Module

3.1 Overview

The Identification and Trust Management Module defines components that are respon-
sible for handling identities and credentials, with various operations including provision,
renewal, or revocation of credentials.

3.2 Identification Management

3.2.1 Purpose of component

This component provides the means to uniquely identify communicating entities in ve-
hicular networks, that is, vehicles or road side units at the wireless part of the network
and trusted third parties at the wire-line part of the system. This component describes
the details of public key creation and management.

3.2.2 Prerequisites

We assume there is an asymmetric cryptosystem, as defined in the cryptographic
support module. For our purpose, the key pairs must be suitable for creation and
verification of signatures.

Furthermore, we assume a suitable administrative process that will initialize identifiers
for new vehicles or on-board units. During this process, names need to be assigned to
entities and corresponding key pairs must be generated and installed in the vehicle.

The Crypto Support Module must provide for this initialization process the following
function:

PublicKey init_device(Identifier ID)

18

3 Identification and Trust Management Module

Technical details regarding this operation are given in (Sec. 7). We do not define the re-
lated administrative procedures in detail, as manufacturing, installation, and operation
procedures for OBUs are currently not foreseeable.

3.2.3 Interfaces and Services

The cryptographic keys described in this section will be used by other components, no-
tably in components of the cryptographic support and secure communication modules.
The private cryptographic key will only be accessible via the mechanisms described in
Sec. 7.

This component defines a signature as follows:

typedef byte[] Signature;

In the current implementation this is a conversion of an ECDSA signature into a byte
array. This array contains two numbers R and S. The length of the signature is 42 bytes
for a 160 bits key (corresponding to an 80 bit security level).

This component does not directly specify any API.

3.2.4 Description

We denote the identifier of an entity X by IDX . The long-term identity is represented
by IDX and is associated with a name of X, a cryptographic key pair (SKX ,PKX),
and a set of attributes of the entity.

The exact format of this unique long-term identity IDX is not specified here, as it will
be the outcome of an agreement between car manufacturers and authorities, similar to
the use of Vehicle Identification Numbers (VINs). Such identifiers of the same format
will be assigned both to vehicles (own or of other’s) and road-side units.

Each identifier (and thus entity) is bound to an asymmetric key pair (SKX ,PKX). A
variety of asymmetric (public-key) cryptosystems is available; we recommend the use
of Elliptic Curve cryptography (e.g. based on the IEEE P1363 standard). The exact
form of implementation will also be influenced by an agreement of which parts of the
standard (if not all) will be supported, and the characteristics of the Hardware Security
Module (HSM).

The private key SKX is generated by and stored in the HSM through the procedure
detailed in Sec. 7.3. The public key PKX is not stored in the HSM.

19

3 Identification and Trust Management Module

3.2.5 Performance

As this section does not describe direct operations to be used in VANETs, there are no
significant performance implications of the mechanisms presented. However, depend-
ing on the cryptosystem and key length chosen, the use of the key pair for signatures
or encryptions will largely influence the overall performance of all the other compo-
nents.

3.2.6 Related Work

See standard IEEE P13631 and NIST “Recommended Elliptic Curves For Federal Gov-
ernment Use”2 for details on Elliptic Curves Cryptography.

3.2.7 Discussion

The convergence to a format of a unique identifyer per system entity is beyond the
scope of a security document, and it depends on a multitude of factors. The binding of
such a unique identifier to unique cryptographic material enables entities to engage in
secure transactions.

3.3 Trust Management Component

3.3.1 Purpose of component

This component describes the trusted third party (TTP) needed to provide the certifi-
cates that are necessary for the identification component described in Sec. 3.2. We
denote here the TTP, referred to interchangeably as a Certification Authority or CA, by
T .

3.3.2 Prerequisites

This component relies on the data structures defined in the Identification component
(Sec. 3.2). It further assumes the provision of a revocation component (Sec. 3.4).
Finally, for each certificate validity period E the availability of reliable communication
channel between system entities and the TTP T is assumed for the time needed to
perform the certificate update protocol.

1http://grouper.ieee.org/groups/1363/
2http://csrc.nist.gov/CryptoToolkit/dss/ecdsa/NISTReCur.pdf

20

3 Identification and Trust Management Module

3.3.3 Interfaces and Services

This component issues certificates as defined in Sec. 3.2:

struct {
Identifier ID;
public_key publicKey;
Attribute[] attributes;
Timestamp StartOfValidity;
Timestamp EndOfValidity;
Identifier Issuer;
Signature certificateSignature;

} Certificate;

The length in bytes of the certificate is the sum of lengths of all element in the struc-
ture. Bellow are the lengths for each field in the current implementation. We consider
sizeof(unsigned int) = 2, sizeof(unsigned char) = 1 and sizeof(long) = 4.

• length(Identifier) is 2, because Identifier an unsigned int;

• length(Attributes) is 2, there are 2 elements of one byte as mentioned above

• length(Timestamp) is 8, there are 2 longs, one for seconds and one for useconds

• The Public Key is composed of three big numbers. The representation of these
numbers in bytes is the same as for the signature, the length of the number is
writen first then the bytes of the number follow. So the total length is 3 + lenno1 +
lenno2 + lenno3. While we are working only with 2 deminsional points lenno3 = 0,
we ignore this number and the lenght is gets equal to 2 + lenno1 + lenno2.

• length(Signature) depends on the security level used and folows the formula 2 +
lenR + lenS .

Summing up all this values and considering a key of 160 bits (represented into 42
bytes) the Certificate length is of 122 bytes.

This component implements a certificate store, which supports retrieval of known cer-
tificates either giving the ID of the entity or the key identifier as an argument. Other
methods allow the storage of new certificates, checking of validity of certificates, etc:

/* retrieve cert from store using entity ID */
Certificate getCertificate(

Identifier ID
)

/* retrieve cert from store using key ID */
Certificate getCertificate(

21

3 Identification and Trust Management Module

String keyIdentifier
)

/* provide new cert, save in cert store if new, verify validity */
Status verifyCertificate(

Certificate cert
)

/* verify that valid certificate for entity is known */
Status verifyCertificate(

Identifier ID
)

/* verify that valid certificate for key is known */
Status verifyCertificate(

String keyIdentifier
)

/* save certificate in cert store */
storeCertificate(

Certificate cert
)

This certificate store allows accessing own certificates as well as certificates of other
parties.

The renewal of the own long-term certificate is achieved via a two-party protocol ex-
ecuted by system entity X and in particular its hardware security module (HSM) and
T .

The update protocol is defined as follows:

22

3 Identification and Trust Management Module

Certificate Update Protocol
Purpose: Retrieving a new certificate with extended validity before the

previous one expires.
Parties: Vehicle VX and CA T .
Pre-condition: Existing certificate is close to expiration but still valid
Post-condition: After a successful run, the entity has received a new

certificate for the new public key. The new key pair and
certificate should then be used at the beginning of their
validity period. In case of failure, the devices can retry as long
as the old certificate is still valid. After that, an automatic
renewal is not possible any more, and a new certificate must
be installed manually.

Direc. Message Description

1 V → T T, IDX ,PK ′X , info, sigPKX
V sends signed request for new
certificate for key PK ′X to T

2 V ← T certPK′X
T returns new certificate

3 V → T T, IDX , info, sigPK′X T acknowledges receipt of
updated certificate

3.3.4 Description

The TTP can be operated by local authorities, for example, at a region, state, or country
level; or it can be operated by an international organization. T has a policy that de-
termines that any newly manufactured car equipped with an onboard unit or roadside
unit, or any onboard that is manufactured for retrofitting, will receive one certificate.

The trusted third party, T , creates a certificate of the form:

certPKX
= (IDX ,PKX , A[], E, T, sig)

where IDX and PKX are the identity and public key of the entity X, T is the identity
of the TTP, A[] is an attribute list by which T declares its trust in certain attributes of
IDX (and thus X), and E is the validity period of the certificate, determined by two
time-stamps, a start and an end time. The generation and binding of all this material
by the TTP is achieved by the sig field, a signature calculated by the TTP T over the
rest of the certificate data, as follows:

sig = signSKT
(IDX ,PKX , A[], E, T)

23

3 Identification and Trust Management Module

Each device IDX is initialized with a certificate using a trustworthy communication link
to T (which is assumed to be available during manufacturing). To obtain credentials
(certificate) and cryptographic material at a later point in time, a two-party protocol with
T is used.

At a point in time τ time units before the expiration of its certificate, X ’s HSM generates
a new key pair (SK ′X ,PK ′X). It then generates a Certificate Request (CR) for T , pro-
viding the identity of the TTP, the entity’s identity IDX , its new public key PK ′X), and T -
specific information in a string info; we denote this asCRdata = (T, IDX ,PK ′X , info).

Then, IDX signs the CRdata, where the request is uniquely identified by the info string,
which includes a nonce, i.e., a not-previously-used identifier with respect to T and IDX ,
and the new validity period E′. The request sent

CR = (CRdata, signSKX
(CRdata))

If the request is authenticated and the IDX has not obtained yet a certificate for the
period E′, T generates a new certificate:

certPK ′X = (IDX ,PK ′X , A[], E′, T, sig)

with its fields defined above. T sends this certificate to IDX as a Certificate Response
(CRS). The protocol concludes with the transmission by IDX of a Certificate Acknowl-
edgement (CAck):

CAck = (T, IDX , info, sign(SK′)X
(T, IDX , info))

Upon reception of the CAck, T considers the installation of the new certificate suc-
cessful. Note that the duration of the E′ is a system parameter, depending on the T ,
and unless the value provided in CR is compliant with the system operation, a new
certificate will not be provided. 3

The CA provides a remotely accessible interface for certificate renewal, performed
as defined above. Using this interface, vehicles that reach the end of their certificate
lifetime can generate a new asymmetric key pair, send the new public key to the CA,
authenticated by the currently available and valid cryptographic key, and receive a new
certificate.

The presence of the HSM ensures that the vehicle will not utilize the newly acquired
certificate and the corresponding private key during the validity period E of its cur-
rent key and certificate. This is so, as E and E′ are partially and to a small extent
overlapping, exactly to enable the renewal.

3Note that in the case of retrofitting, that is, installation of an OBU in used cars, an off-line identification
process is necessary to ascertain the correctness of used attributes (e.g., physical or other attributes).

24

3 Identification and Trust Management Module

The CA certificate is always valid, in the sense that the CA itself ensures the distribu-
tion of a new certificate when necessary. The CA certificate format follows that of the
certificate formats for the entities:

certPKT
= (T,PK T , ACA[], ECA, I, sig)

where T is the unique identity of the CA or TTP we denote as T 4, PK T is its public
key, ECA is the validity period of this certificate, ACA[] is a list of attributes for T (such
as the geographic area it covers), and I the identifier of the certificate issuer. ECA is
significantly larger than any E for the validity of entity certificates. The issuer of such
certificates for a CA is either a hierarchically superior authority R, or in the case of
several independent authorities operating in the absence of an R, I = T . In that latter
case, to ensure inter-operability and enable secure communication between vehicles
registered with distinct authorities (trusted third parties), each trusted third party S can
generate a certificate for each trusted third party T 6= S if CA policies are compatible.
This is essentially the concept of cross-certification. In that case, for example, I = S
above, and

sig = signSKS
(T,PK T , ACA[], ECA, S)

3.3.5 Performance

The performance overhead due to this component is not considered in detail and it is
very low for the system entities: the certificate renewal is infrequent, with certificate
validity periods being a significant fraction of the vehicle and on-board unit. These
long-term credentials are not used for inter-vehicle or vehicle-to-road-side-unit com-
munication. As such, they are used for infrequent transactions, as those in Sec. 4.2.

3.3.6 Related Work

The organization of a certification authority for the Internet has been considered, and
a standardized architecture currently in broad use is defined in the PKIX documents of
the Internet Engineering Task Force (IETF) (RFCs 3279, 3280, and others).

4for simplicity, we avoid here the distinction between T and IDT

25

3 Identification and Trust Management Module

3.3.7 Discussion

The exact form of a certification authority is beyond the scope of this document and
project. This is so, because organizational and policy issues, among other factors that
do not relate only to the technically appropriate solution, will affect the choice of a
specific form. It is also possible that a mix of forms will be adopted as the deployment
of vehicular communication systems takes place. For example, it is not clear which
entity will be the one that certifies all trusted third parties, or if one will exist, and what
portion of the system it will cover.

3.4 Revocation Management

3.4.1 Purpose of component

This component provides the means to revoke long-term identification and related
cryptographic keys and credentials of entities in vehicular networks before expiration of
the certificate lifetime, and this way essentially evict the entity from the network. This
component only deals with revocation of long term credentials and not pseudonyms as
discussed in Sec. 4.

With the revocation mechanism described here, vehicles do not receive revocation
information directly. Instead, revocation is done indirectly by making a pseudonym
provider rejecting new pseudonyms to vehicles with revoked long-term credentials.

3.4.2 Prerequisites

The presence of trusted third party or certification authority is assumed, along with the
means to identify entities, as detailed in Sec. 3.2 and Sec. 3.3.

3.4.3 Interfaces and Services

The process relies on an interface between the Pseudonym Management Component
at the side of the Pseudonym Provider (PP), in Sec. 4.2, and the trusted third party. As
this interface is not part of the vehicular communication system, it will currently not be
described here.

26

3 Identification and Trust Management Module

3.4.4 Description

A node deemed illegitimate (e.g., expired registration or stolen) or malfunctioning can
be removed from the network. This is possible by revoking the long-term credential
of the vehicle. Revoking the long-term credentials of a node evicts the node from the
system, but it does not automatically prevent the node from participating in the VC
system operation. This is so, because the long-term identity and credentials are not
utilized for communication.

However, long-term credentials are used for the vehicles to obtain the credentials they
utilize for communication, as specified in Sec. 4.2: the pseudonym provider will supply
short-term credentials only to legitimate members of the system, i.e., registered with a
CA. Once the pseudonym provider is notified that a specific node is revoked, it will not
respond to any further pseudonym requests, as specified in Sec. 4.2. This will prevent
the illegitimate node from any further participation in the system after expiration of its
short-term pseudonyms.

Trusted third parties compile revocation information in the form of Certificate Revoca-
tion Lists (CRLs), which are of the form:

(IDX , IDY , IDW , . . .), T, time, SEQ, sign(SK T , (IDX , IDY , IDW , . . .), T, time)

A list of identifiers of vehicles5 to be revoked is followed by the CRL issuing authority
identity T , a validity period of the CRL time, a CRL sequence number SEQ, and the
given issuer T . The distribution of revocation lists among distinct CAs (TTPs) facilitates
the eviction of entities throughout the system, if, for example, a vehicle tried to engage
in communication in an area administered by a CA other than the one that certified its
original (and valid till the revocation) credentials.

The procedure described above is only applicable to vehicles using short-lived pseu-
donyms. As RSUs are not expected to use pseudonyms, but instead communicate
using a their long-term credentials. A dedicated revocation of RSU certificates is not
implemented, instead the life-time of RSU certificates should be kept very small (e.g.
one day). As RSUs are assumed to have a wire-line or other infrastructure-based
network connection to T , they can run the update protocol described in Sec. 3.36

more often than vehicles. If overhead of this frequent renewal is a concern, [KSW06]
describes a mechanisms to reduce that overhead.

5depending on the capability of CRL users to map identifiers to public keys, the list could additionally
contain the corresponding public keys

6Note that RSUs are also equipped with an HSM.

27

3 Identification and Trust Management Module

3.4.5 Performance

As the revocation of long-term identifies and the distribution of CRLs is done exclu-
sively between CAs (TTPs) and pseudonym providers with which the vehicle may then
perform transactions, there is no revocation specific communication in the vehicular
part of the network. Therefore the size of CRLs and the frequency of distribution are
not affecting the performance of the vehicular network.

3.4.6 Related Work

The concepts of revocation are broadly in use in a variety of settings, in the Internet and
beyond (e.g., credit cards usage). In our case, the communication between the CAs
(TTPs) and the service providers can be performed by the standard TCP/IP protocol
stack using PKIX protocols.

3.4.7 Discussion

The size of CRLs is an aspect that the designers of this architecture cannot know at
the time of development. At worst, the scale of CRLs will be linear in the number
of network entities. However, the number of revoked vehicles would be reasonably
expected not to exceed a small fraction of the registered vehicles. As such, the size
of the CRL will follow at most the number of vehicles registered during the average
certificate lifetime. As CRLs are distributed across the wireline and not the vehicular
part of the network, no additional performance consideration is made here, assuming
ample bandwidth and processing power.

We currently assume no need for revocation of pseudonyms, as their expiration time
is considered to be very short. Therefore it is more efficient to simply wait for their ex-
piration instead of creating additional revocation overhead. If this will be nevertheless
necessary, [PMH08, RPJP06, KSW06] provide approaches how to organize efficient
revocation of pseudonyms in vehicular and ad-hoc networks.

28

4 Privacy Management Module

4.1 Overview

The Privacy Management Module provides privacy-enabled vehicular communications
while still fulfilling necessary secure requirements. It leverages on resolvable pseu-
donyms (i.e., certified short-term public keys) to achieve a defined level of privacy for
individual vehicles and yet allow the identification of valid vehicles and public bodies
to resolve pseudonyms to vehicle long-term identities under well-defined conditions.
Vehicles are loaded with sets of pseudonyms they can then use for message signing.
By switching pseudonyms and using them only for a limited amount of time, privacy
attacks are impeded significantly, notably in the presence of an adversary (eavesdrop-
per) that does not cover the entire network area.

4.2 Pseudonym Management Component

4.2.1 Purpose of component

The Pseudonym Management is responsible for administration of the on-board pseu-
donym pool. The functionalities of this component include the initiation of pseudonym
generation, adding and deleting pseudonyms in the pool, monitoring the pseudonym
usage status, and the configuration the pseudonym refill policy.

Besides, this component also defines the structure of pseudonyms, which are short-
term certified public keys that do not provide additional identifying information. They
can, however, include a list of vehicle attributes that need to be attested by a TTP.
These attributes should be sufficiently generic so that an identification of an individual
vehicle is not possible based on the attribute list.

4.2.2 Prerequisites

This component requires each vehicle to have obtained a unique long-term identifier
IDX which bounds to a corresponding certificate certPKX

provided by the Identification
& Trust Management Module 3.

29

4 Privacy Management Module

It is prerequisite that there is a PP in the Public Key Infrastructure (PKI), who can certi-
fied public keys from individual vehicles (i.e., issue pseudonyms to legitimate vehicles),
and such pseudonyms are trusted by all nodes in the network.

Additionally, it is assumed that there exists a Hardware Security Module (HSM) where
secret keys from pseudonyms can be stored securely and that will do all secret key
operations.

4.2.3 Interfaces and Services

The Pseudonym Management component communicates with a remote Pseudonym
Provider using a bi-directional protocol to acquire new pseudonym certificates for lo-
cally generated pseudonym keys.

We define the data structure for a pseudonym as:

struct {
Identifier ID;
public_key publicKey;
Attribute[] attributes;
Timestamp StartOfValidity;
Timestamp EndOfValidity;
Identifier PseudonymProvider;
Signaure certificateSignature;

} PSNYM

It can be noticed that the PSNYM structure is equivalent with the Certificate structure.
As a consecqunce if the same security level is used the PSNYM’s length equals the
Certificate’s length. If we take again a security level of 80 bytes (public key of 160 bits)
the total legth of this PSNYM is 122 bytes.

ID can be used to uniquely identify a private/public key pair (in other words, the pseu-
donym and its corresponding private key) within the modules and components in the
security architecture. The structure of pseudonym is similar to the certificate defined
in Identification and Trust Management Module. However, any information that can be
used to identify a specific vehicle is removed from the certificate to form the structure
of the pseudonym.

The following also defines the services and interfaces in this component.

int[] getPseudonymPoolStatus()

This method returns the status of the pseudonym pool. There are two elements in the
array int[], i.e., the number of used pseudonyms and the number of un-used pseudo-
nyms.

30

4 Privacy Management Module

PSNYM[] generatePseudonyms (
int NumberOfPsedonyms;
)

This method initiates a request to the Identification and Trust Management Module for
generation of a new set of pseudonyms. Notice that the pseudonym generation is a
cooperative process between the HSM and the Identification and Trust Management
Module. The actual generation is not done in this method (see Pseudonym Generation
in Sec.4.2.4). The function returns new pseudonyms specified in the NumberOfPseud-
nyms.

boolean setRefillPolicy (
int maxNumberOfPseudonym;
int minNumberOfPseudonym;
int maxValidityPeriod;
int minValidityPeriod;

)

This method sets the parameters for a vehicle’s pseudonym refill policy. maxNumberOfPseudonym
specifies the maximum number of pseudonyms a vehicle can refill at one time. There-
fore, maxNumberOfPseudonym depends on the size of the on-board pseudonym
pool, as well as the maximum allowance set by the pseudonym provider. When the
number of un-used pseudonyms in the pseudonym pool is below the number specified
by minNumberOfPseudonym, the on-board system should either prompt the driver
to contact the pseudonym provider for pseudonym refill, or start the pseudonym refill if
an automatic pseudonym generation mechanism is available (depending on the con-
nectivity to infrastructure network). The next two arguments, maxV alidityPeriod and
minV alidityPeriod specify the maximum and minimum validity period of each pseu-
donym in terms of hours or days (depending on actually implementations). Although a
vehicle can set the value of the validity period, it should be in the range specified by
the pseudonym provider. By specifying the range of minimum and maximum validity
periods, the pseudonym provider can mandate the period of time for which the vehi-
cle should refill its pseudonyms, while giving a vehicle a certain degree of flexibility to
decide the frequency to request for pseudonym refill.

4.2.4 Description

Pseudonym

Pseudonyms are a set of distinct certified public keys that do not provide additional
identifying information.

31

4 Privacy Management Module

Instead of using a long-term identifier for signing messages, each vehicle is equipped
with a set of short-term identifiers (e.g., {psnymX1, . . . , psnymxk}) that consist of a key
pair and corresponding certificates. Those pseudonyms are similar to the long term
identifiers from Sec. 3.2 with the exception that they do not include any information
which identifies an individual.

The pseudonym key pair of vehicle X (PSNYM − SKXi,PSNYM − PKXi) is a key
pair as defined in Section 3.2. A pseudonym certificate for this key pair has the follow-
ing format:

psnym − certXi = (PSNYM − PKXi, A[], E, PP, sig)

where A[] is the attribute list by which PP declares its trust in certain attributes of
X, E is the validity period of the certificate, determined by two time stamps, a start
and an end time. PP denotes the pseudonym provider which created this pseudonym
certificate and sig is a signature over the certificate data calculated using PPs private
key:

sig = sign(SKPP ,PSNYM − PKXi, A[], E, PP)

The pseudonym provider PP is an authority issuing pseudonym certificates similar to
the CA described in Sec. 3.3.

When using pseudonyms, a safety-related message from a vehicle X will roughly have
the following format:

MSG = data | sig | PSNYM

Details of message formats are given in the respective components described in the
components of the Secure Communication Module.

Pseudonym generation

The generation of new pseudonyms basically involves two steps:

1. Generation of key pairs: the HSM module generates a set of new key pairs
(PSNYM − SKXi,PSNYM − PKXi) ∀i = 1 . . . n.

2. Retrieval of certificates: the OBU contacts the pseudonym provider, sends all
the pseudonym public keys plus authentication information, and in turn receives
one certificate per key pair.

32

4 Privacy Management Module

The communication with the PP has to be done via an authenticated and confidential
communication link. The exact details of the pseudonym provider protocol where a PP
communicates with vehicle X are as follows:

X → PP : PSNYM − PKX1,PSNYM − PKX2, . . . ,PSNYM − PKXn

PP → X : N
X → PP : sign(PSNYM − SKX1, N), sign(PSNYM − SKX2, N), . . .
PP → X : psnym − certX1, psnym − certX2, . . .

Pseudonym certificates are only issued, if vehicle X was previously able to authenti-
cate to PP using IDX and if X can prove knowledge of the corresponding secret keys
PSNYM − SKX1, N by signing a nonce N .

Pseudonym Storage

The pseudonym certificates are stored in the OBU, the secret keys are stored in the
hardware security module. Certificates are transmitted together with packets sent and
contain only public information. Therefore, they do not need to be protected. Knowl-
edge of secret keys of other vehicles’ pseudonyms, however, would allow imperson-
ation of those other vehicles and need to be stored in a protected way.

The storage space allocated for pseudonyms in the OBU depends on the available
space in the OBU and the frequency of pseudonym usage (i.e., how often a vehicle
needs to sign the messages with the same private key and the corresponding pseudo-
nym).

Pseudonym Refill

Frequent change of pseudonyms used in communication ensures the privacy of ve-
hicles. The Pseudonym Management should constantly monitor the number of valid
pseudonyms in the storage, how often/long they have been used, and when they will
expire. When the number of available pseudonyms falls below a certain threshold, the
Pseudonym Management will restart the pseudonym generation procedure and obtain
a new set of pseudonyms. This is called ’Pseudonym refill’.

Pseudonym Resolution

When issuing pseudonym certificates, the pseudonym provider PP stores the mapping
between IDX and all PSNYM − PKXi at a pseudonym resolution authority PRA. The
mapping is stored for the lifetime of the pseudonym plus some extra time. Based
on certain legal conditions, public bodies, for example, vested with the power of law
enforcement, can contact the PRA and request a resolution for any PSNYM − PKXi.

33

4 Privacy Management Module

The PRA will then provide IDX which essentially reveals the exact identity of the
vehicle.

Received Pseudonyms Storage

A pseudonym received for the first time with a secured message, is verified and then
stored with the result of the verification. When it is received again, for time optimization
reason, the pseudonym is not verified again but the stored result is used. This storage
is done in OBU and the allocated storage space depends on the available space in the
OBU. The storage is refreshed, so expired pseudonyms are deleted.

4.2.5 Performance

Cryptographic operations with pseudonyms are not different from operations in the
Identification & Trust Management module. The regular refill of pseudonyms creates
both a communication and storage overhead that the vehicular communication system
must be able to bear. However, as the change intervals and number of pseudonyms
can be adjusted to the bearable overhead, there is bias between privacy and overhead
that can be controlled by system designers/administrators.

4.2.6 Related Work

See “Security without identification: Transactions to make big brother obsolete” [DC85]
for the concept of pseudonyms. Concept of pseudonyms in vehicular networks can
be found in “Privacy Issues in Vehicular Ad Hoc Networks” [FD05]. A more detailed
description of implementation of pseudonyms in vehicular networks is in “Architecture
for Secure and Private Vehicular Communications” [PBH+07].

4.2.7 Discussion

In this component, we assume that pseudonyms are generated by the pseudonym
provider, which is a particular instance of CAs within the PKI. A vehicle is thus required
to connect to the infrastructure on a regular basis in order to obtain pseudonyms. As
discussed, this creates a certain overhead. An alternative approach is to let vehicles to
generate pseudonyms themselves on-the-fly as described in [CPHL07]. However, as
this is an area of ongoing research and as the baseline architecture is meant to provide
solid and well-understood mechanisms only, we use the concept of a pseudonym refill
here and will provide more complex mechanisms in future components.

34

4 Privacy Management Module

4.3 Pseudonym Application Component

4.3.1 Purpose of component

The Pseudonym Application provides pseudonyms which are used in secure commu-
nications. Beside providing valid pseudonyms, this component decides how long a
pseudonym is allowed to be used in the communications and when to change to an-
other pseudonym, according to the privacy policy defined either by the user or the VC
system. It specifies a framework, on which a vehicle’s decision of pseudonym changes
are based. The component is also responsible for coordination of changes of identifiers
in other layers in the communication stack.

4.3.2 Prerequisites

This component assumes that a vehicle X has a set of valid pseudonyms available.
Details about format and creation of pseudonyms is given in the Pseudonym Manage-
ment component (see Section 4.2). It is also assumed that the lower layer protocols,
e.g., at the data link layer, can respond to the changing address command and update
their addresses accordingly if possible.

4.3.3 Interfaces and Services

The Pseudonym Application component provides valid pseudonyms to other modules
and components in the architecture (e.g. the components of the Secure Communi-
cation Module), and monitor the usage of pseudonyms in terms of duration. This
component also coordinates changes of identifiers in the Communication Stack (e.g.,
IP address in the network layer, MAC address in the link layer) by sending a changing
command to the Communication stack when pseudonyms change.

This component has the following services and interfaces:

boolean setPrivacyPolicy(
double FixInterval;
double RandomInterval;

)

This method configures the overall pseudonym change policy (e.g., change every
minute, every hour etc.) It configures two important parameters for the pseudonym
change interval: the fixed interval τ and the random variable δ. The method returns
true if setup success and false when setup fails.

35

4 Privacy Management Module

PSYNM getCurrentPseudonym ()

This method returns the currently used Pseudonym.

boolean updateStackAddress ()

This method sends a changing address command to the communication stack. The
TCP/IP stack and the MAC layer in the communication stack should change their ad-
dresses (i.e., IP address, MAC address) simultaneously after received the command.
This method returns true if it succeeds, false if the communication stack is not able to
change the addresses.

4.3.4 Description

The Pseudonym Application component provides a method which returns the key id of
the pseudonym that is currently to be used. This key id is then to be given as an ar-
gument in calls to the HSM requesting e.g. signing of data. Based on this information,
the HSM can then select the proper key material. The signature of this method is:

PSYNM , IDkey = PseudonymApplication.current();

For privacy reasons, each pseudonym will only be used in the communication for a
short period of time and then discarded. The time-lapse since a pseudonym is used is
denoted as τ . We suggest that τ is in the range of seconds to a few minutes.

After providing the pseudonym, Pseudonym Application sends a change_address((<
layer >,< address >), . . .) command to the communication stack instructing it to
change the addresses on the respective layers. The communication stack will reset
the current used identifiers as soon as all messages currently queued in the stack1

have been sent.

The decision to switch to a new pseudonym is based on how long the current pseudo-
nym has already been used (tused). This time is calculated as the current time tcurrent

minus the time of the last pseudonym change tlast, i.e. tused = tcurrent − tlast. The
Pseudonym Application component compares tused with the pseudonym changing in-
terval that consists of a fixed time interval τ randomized by a random variable δ, and
switches to a new pseudonym, when the following condition is satisfied:

tused ≥ τ + δ

1i.e., having already left the Secure Communication Module but having yet to be send by the communi-
cation stack

36

4 Privacy Management Module

where δ is in a configurable interval [−ε,+ε]. This randomization is necessary as oth-
erwise pseudonym changes could easily be tracked based on the pseudonym change
timing observed by an attacker.

4.3.5 Performance

As a pseudonym change is a pure internal activity, there is no direct influence on
performance. Note however, that our research has shown that change of short-term
identity may influence the performance of certain network protocols [SKS+06].

4.3.6 Discussion

The current version specifies a very straight-forward algorithm for the decision of pseu-
donym change. More sophisticated algorithms could be envisioned that e.g. take the
vehicle context (e.g., location, velocity, and neighboring conditions etc.) into consider-
ation. Such approaches will inevitably increase the computation and implementation
cost, and their effectiveness has yet to be evaluated. Future versions of Pseudonym
Application components might address these issues.

Network operation considerations such as communication with an access point through
the TCP/IP stack might require that the vehicle keeps the identifier fixed for a certain
time. Under such situations, the pseudonym as well as identifiers in Communication
Stack should remain unchanged. This can be achieved by a call from the communica-
tion stack to the Pseudonym Application component that prevents pseudonym changes
for that time.

37

5 Secure Communication Module

5.1 Overview

The Secure Communication module deals with aspects of assuring security of the
communication network. This means that the module takes care of the actual com-
munication processes in order to ensure their reliability. For that, it also utilizes and
cooperates with practically all other modules.

As components, we distinguish between several, typical types of communication in
vehicular networks, which all have particular properties in terms of security. The com-
ponent descriptions are somehow more generic than the other modules, as parts of
these components need to be specifically tailored to the communication stack used.
Details on this and the adaption layer can be found in the SeVeCom baseline architec-
ture (SeVeCom Deliverable 2.1).

5.2 Secure Beaconing Component

5.2.1 Purpose of component

Assumptions on Communication Model

In vehicular networks, beaconing denotes a mechanism which broadcasts information
periodically in the wireless transmission range of a node. Besides some identifier, the
information typically includes the vehicle’s own position and additional information like
speed or heading. Beacons are usually not forwarded, i.e. are consumed after one
hop.

Applications and also other stack components like geographic routing use beacons
e.g. to determine the locations of vehicles in the vicinity. Using the location updates of
vehicles around, an application inside one vehicle is able to predict the others’ trajec-
tories and thus is able to help with lane merging, for example.

38

5 Secure Communication Module

Security Goals

As a basic goal, a receiver needs to be able to verify authenticity and integrity of
beacons. This means that a vehicle must be able to trust in the content of a beacon
message in a way that

• the sender is actually a valid participant of the network (e.g., a vehicle, RSU,
traffic sign, etc.)

• the identified sender has sent the message, not another one

• the data is up-to-date

• the data has not been altered

5.2.2 Prerequisites

The component requires access to several services from other components. In partic-
ular, it relies on an established identity and credentials management, which allow for
getting current credentials or even to have basic operations done there. For instance,
the component does not care about the current identifier of a vehicle, its credentials or
implemented cryptographic functions – it just uses the data and functions supplied in
the corresponding components (see Section 3).

If pseudonyms are in use as described in the Privacy Module (see Section 4), the
way of signing and verifying messages does not change - the privacy and identity
management modules have to take care which keys to use.

In summary, the requirements for secure beaconing include:

• A mechanism to determine the current identity

• A mechanism to sign data

• A mechanism to verify a signature

• A mechanism to get the current time

5.2.3 Interfaces and Services

Hooking

The component provides an interface which allows the component to be hooked into
the process of beaconing. Therefore, the component is notified when beacon packets
are to be sent or received.

39

5 Secure Communication Module

The secure beaconing component requires total control over the further processing of
packets. For example, the secure beaconing component may figure out that an incom-
ing beacon message is invalid and therefore decides to discard it. This can be done
either by this component itself, or by the network layer implementation. The interface
design here assumes that the network layer is able to process certain return codes
and has to drop a packet accordingly, if the secure beaconing components indicates
so.

5.2.4 Description

During the setup of the system, the secure beaconing component is hooked into the
data delivery path. When we assume network layer beaconing, the Secure Beaconing
component is attached between the network and link layer. Using this hook, the se-
cure beaconing component will process the beacon data both upon sending and upon
reception of a beacon.

Outgoing beacons:

When a beacon message is lined up to be sent, the hook redirects the message to the
secure beaconing component.

To be able to scan the content of the beacon, the message format must be known to
the secure beaconing component, at least to some extent.

As mentioned earlier, typical beacons will include at least

• the current vehicle identifier (pseudonym) X

• the current vehicle location locX

In addtion, the secure beaconing also requires a current time stamp tc to be included
in the beacon message in order to be able to ensure freshness of beacons.

For both efficiency and security reasons, these fields should not be duplicated in a
beacon message. Hence, the implementation has to reuse existing fields. In case
that the required fields are not included already, they have to be appended by the
secure beaconing. Moreover, even if the required fields are already included, secure
beaconing has to ensure that they comply with the security requirements. For instance,
if the application has already added the field for the vehicle position, but this position
information is not accurate enough for security reasons, another, appropriate location
has to be appended by the secure beaconing.

Finally, the PAYLOAD should contain:

PAYLOAD = X | locX | . . .

40

5 Secure Communication Module

After these preprocessing steps, the component uses signing capabilities of the iden-
tification and trust management module. Moreover, the current time tc is returned
together with the signature, as the Hardware security module provides a function to
sign with timestamp.

After that, the beacon message will comprise payload, timestamp, signature and cer-
tificate:

BEACON = PAYLOAD | tc | sigSKX
(PAYLOAD | tc) | certPKX

The signed BEACON will then be returned into the data delivery path.

Incoming beacons:

When a beacon arrives at a vehicle, it is passed over to the secure beaconing compo-
nent via the hooking interface. The component will first check the attached signature
by using the verify method of the identification management module. If the signature
can be verified, further post-processing is applied, like the freshness check to prevent
replay of old messages. If the signature is invalid, the message is either discarded
immediately or marked as invalid by the component. The choice depends on whether
applications also want to process invalid packets and should be configurable.

After the signature check, which includes a certificate check, it can be guaranteed
that

• The message was sent once by the given sender X

• The message has not been altered

• The sender is a valid network participant

Moreover, as the messages must not be replayed from vehicles passing by earlier,
the freshness check needs to validate that the message’s time stamp is recent. This
requires a means to determine the current time, which is provided by the hardware
security module.

Note that the freshness check should explicitly tolerate propagation delay. An allowed
deviation of several seconds seems reasonable to prevent large-scale replay. This
treatment also has the advantage that clocks do not need to be tightly synchronized.
Nevertheless, if an older message is received, it is discarded.

41

5 Secure Communication Module

Secure Beaconing API

Data structures

We define the following data structures that we use in the specification of the API. Note
that further details on most parts of the structures are available in other part of the
specification or are subject to the implementation of the network stack. For example,
the format of a node identifier is left opaque here.

Packet {
Identifier source
Location senderLocation
<Optional Headers>
<SecurityHeader>
Data data

}

SecurityHeader {
Signature sig_SKX
Certificate cert_PKX
Time t_c

}

The following functions are hooked into the communication flow:

send

inputs:
Packet p

outputs:
SecurityHeader secHeader;
uint ReturnCode;

exceptions:
InvalidPacket

Sends a beacon message. Time, signature, and a certificate is added to the Security-
Header and returned to the communication stack to be appended to the message.

42

5 Secure Communication Module

receive

inputs:
Packet p

outputs:
uint ReturnCode;

exceptions:
InvalidPacket

Checks if a recently received beaconed message is correct. Returns 0 if the packet
was correct otherwise returns an appropriate error code like certificate error, signature
error, timestamp error. Note that the Packet here contains the SecurityHeader.

5.2.5 Performance

Due to the periodicity of beacon messages, performance is a relevant factor. Particu-
larly, expensive cryptographic operations might influence performance. For example,
if a vehicle has 50 neighbors in its wireless transmission range, and beacons are sent
with 10 Hz, every vehicle needs to verify 500 signatures per second. Note that this
node density and this beacon frequency are not unrealistic assumptions. 10 Hz is one
of the proposed number for beaconing frequency and 50 vehicles within the transmis-
sion range are easily reached in a traffic jam. Assuming 3 lanes, a vehicle every 25
m and a transmission range of 300 m, which are not too pessimistic values, we get
theoretically 72 vehicles within the transmission range.

As vehicle on-board units often do not possess extensive computing power, this needs
to be respected. Because asymmetric crypto operations are relatively costly compared
to symmetric operations, signing every beacon with such mechanisms may become
inadequate. However, as computing power is variable and very likely to be improved in
the future, the specification assumes to be able to process all signature verifications in
time.

Future specifications of this component will include performance optimized versions of
this component that will e.g. not need to verify signatures in every packet received.

5.2.6 Related Work

Several researchers already addressed the security of beaconing in vehicular net-
works. For instance, Hu and Laberteaux proposed a TESLA-based approach to reduce
the number of required verifications [YCHKPL06]. However, this comes to the cost of
delaying messages for one period of time and it requires a tight time synchronization
(which could be affordable because of available GPS time).

43

5 Secure Communication Module

A more general proposal to beaconing can be found in [RCCKL06]. Here, the authors
deal with the problem that potentially many applications will use beaconing-like com-
munication. Both periodicity and payload overlap then lead to a large communication
overhead. Therefore, they propose to use a central message dispatcher, where ap-
plications can register their needs and the message dispatcher takes care of sending
appropriate beacons.

5.2.7 Discussion

Advantages

The presented component achieves the basic security goals given in section 5.2.1.
With the signatures, beacons are authenticated so that no impersonation is possible
any more that can not be detected. In addition, beacons are automatically integrity
protected as well. Regarding privacy, the component uses the identity and pseudonym
management components, which ensure regular and thoughtful change of a vehicle’s
identity.

Drawbacks

One drawback of this basic solution is the problem that signature verification does not
scale well. In scenarios with high node density, a node may receive more messages
than it is able to verify in time. Therefore, further research needs to be done whether
this situation can actually occur and if yes, which solutions could be applied. In ad-
dition, injection of bogus messages with high frequency may become a new attack
vector, which then would have to be verified, which can lead to denial of service of the
OBU due to the high load.

Besides the performance issue, some attacks are not addressed yet. For instance,
dedicated shooting of single packets against single or all nodes can not be prevented
nor detected by the current status. The same holds for handling jammed signals. In
both cases, sort of a graceful degradation would be desirable.

Another issue is the strong dependency on the cryptographic components. Without
these components on board, the implementation will not work.

44

5 Secure Communication Module

5.3 Secure Flooding Component

5.3.1 Purpose of component

Assumptions on communication model:

Flooding is an approach that is used for a number of applications in VANETs to dis-
tribute information very quickly among the immediate surroundings of a vehicle. The
basic principle involves multi-hop broadcast forwarding, which means that every node
rebroadcasts the message once. As this can not be done network-wide, the rebroad-
cast is usually restricted by either a time-to-live counter value (TTL) or a geographic
destination area (GDA).

Security Goals:

The purpose of this security component is to ensure integrity, authenticity and reliability
of this mechanism. As a primary goal, the component is intended to prevent malicious
vehicles being able to disturb the mechanism by means of rerouting, tampering and
dropping. As a secondary goal, the module should be able to cope with attacks that
intend to exploit the flooding mechanism to disturb the whole network operativeness.
This is particularly important since flooding is a relatively costly mechanism that con-
sumes a lot of bandwidth especially when node density is high.

5.3.2 Prerequisites

The component requires access to several services from other components. In partic-
ular, it relies on an established identity and credentials management, which allow for
getting current credentials or even to have basic operations done there. For instance,
the component does not care about the (current) identifier of a vehicle, its credentials
or implemented cryptographic functions – it just uses the data and functions supplied
in the corresponding components (see Section 3).

If pseudonyms are in use as described in the Privacy Module (see Section 4), the
way of signing and verifying messages does not change - the privacy and identity
management modules have to take care which keys to use.

The following list summarizes the dependencies:

• A mechanism to determine current identity and credentials

• An interface to sign data

• An interface to verify signed data

• An interface to get own location

45

5 Secure Communication Module

Prerouting

Input

ForwardRouting

Local
Node Output

Postrouting

Routing

Figure 5.1: Details on hooking interception methods into the packet flow of the network
stack

• An interface to get a global, loosely synchronized time

5.3.3 Interfaces and Services

Hooking

The component provides an interface which allows the component to be hooked into
the process of flooding. Therefore, the component is notified when packets are to be
sent, received, or forwarded.

The secure flooding component requires total control over the further processing of
such packets. For example, the secure flooding component may decide whether it is
secure to forward packets or if they are manipulated and should be discarded. This
can be done either by this component itself, or by the network layer implementation.
The interface design here assumes that the network layer is able to process certain
return codes and has to drop a packet accordingly, if the secure flooding components
indicates so.

Because we distinguish between packets being received, forwarded and sent, we as-
sume that the hooks can be inserted at defined points of the network stack. This could
be similar to the Linux netfilter architecture, as depicted in Figure 5.1.

For example, the receive method is added to the prerouting chain, the forward method
to the forwarding chain and the send method to the output chain.

5.3.4 Description

Different actions need to be taken depending on whether a packet is incoming or out-
going, and in this case if it is created by the current node or forwarded only. Moreover,
the applied security mechanisms partly depend on the mechanism used, i.e. whether
the flooding restriction is TTL-based or GDA-based.

46

5 Secure Communication Module

Outgoing messages

An outgoing message may either originate from the current node or is to be forwarded
by the current node. The required security processing differs notably.

Own Messages:

For all messages created by one of the applications of node X, a signature has to be
computed and a time stamp tc has to be added if not already included (see discussion
of overlapping fields of protocol and security mechanisms in Section 5.2.4). If the
forwarding is TTL-restricted, then also a hash chain mechanism has to be applied,
because otherwise malicious forwarders could decrease the TTL and thus increase
the multi-hop propagation area. Such an increase leads of course to wasted network
bandwidth. If the restriction is given by a fixed geographic destination region, the hash
chain is not necessary.

Hence, the first step is to include a timestamp tc or to ensure that an accurate times-
tamp is already included. This is done together with the signature.

The second step is to compute the hash chain in case of TTL-restricted fowarding.
Therefore, the component has to generate a random base value v, apply a hash func-
tion TTLMAX times on it and append the result hv as well as v to the message.

As third step, the signature has to be created and the certificate for the used key (long-
term ID or pseudonym) has to be attached. For this step, it is important to distinguish
between mutable and immutable fields (Fm and Fim). Fields like the TTL value or the
hash chain base value v change during the forwarding, whereas other, immutable fields
like the payload, the source address or the end of the hash chain hv do not change.
The signature should only be computed for these immutable fields, and not include
mutable ones.

For GDA-restricted forwarding, the message looks like this:

Fim = PAYLOAD | X | GDA | tc

PACKETGDA = Fim | sigSKX
(Fim) | certPKX

For TTL-restricted forwarding, the message includes the following:

Fim = PAYLOAD | X | hv | tc

Fm = v | TTL

PACKETTTL = Fim | Fme | sigSKX
(Fim) | certPKX

47

5 Secure Communication Module

Forwarded Messages:

Packets forwarded by the local node need to be processed after the routing procedure.
In particular, the hash chain base value v has to be replaced by h(v), i.e. the hash
chain has to be shortened by one element, because the routing has decreased the
TTL value.

Other fields, especially the signature and the immutable fields are not modified by
forwarding nodes, but of course play a role to check incoming messages.

Incoming messages

The primary purpose for the inspection of all incoming packets is checking security
policies. One of these policies is the verification of the attached signature as well as
the certificate. If the signature or the certificate can not be verified, the message should
be dropped. Moreover, more checks are necessary to ensure security. In summary, an
incoming message should pass all the following checks before continuing processing
(e.g. routing).

Certificate check:

The attached certificate is checked. The result can be stored for the lifetime of the
certificate, so that further crypto operations for the same certificate are not necessary
any more and the check can be skipped for further messages from the same source.
The actual certificate checking is done by the identification management component.

Signature check:

The attached signature is verified. This task is provided by the identification manage-
ment component.

Timestamp check:

To prevent replay, the timestamps of incoming messages have to be checked for con-
sistency with the own time base. The own time base is provided in a secure manner
by the hardware security module. The comparison should accept a configurable differ-
ence ∆t between the packet’s timestamp tp and the local current time tc.

GDA size check:

In order to prevent destination areas of very large size, a maximum covered surface as
well as maximum width and length may be imposed on the GDA.

48

5 Secure Communication Module

Hash chain check:

The hash chain used to secure the TTL decrement must be checked as well. Therefore,
the node takes the base value v and applies the hash function sequentially TTL times
on it. If the gained result matches the hv value contained in the packet, the check is
successful.

If any of these checks fails, the message must not be forwarded. Regarding local
reception, it is either discarded immediately or marked as invalid by the component.
The choice depends on whether applications also want to process invalid packets and
should be configurable.

Secure Flooding API

Data structures

The packet structure is mainly defined by the communication system itself. However,
the secure flooding requires some basic information in the packet. Moreover, certain
data types like the node identifier are only placeholders for their actual implementation
in the stack.

Packet {
Identifier source
Location senderLocation
int floodingType
<Optional Headers>
<SecurityHeader>
Data data

case(floodingType)
TTL:

byte ttl
GDA:

GDA destination
}

SecurityHeader {
Signature sig_SKX
Certificate cert_PKX
Time t_c
case(floodingType)

TTL:
byte[] v

49

5 Secure Communication Module

byte[] h_v
}

The following functions are hooked into the communication flow:

send

inputs:
Packet p

outputs:
SecurityHeader* secHeader;
uint ReturnCode;

exceptions:
InvalidPacket

Invoked on sending of a flood message which is created by the own node. Time,
signature, and a certificate is always added to the security header. In case of a TTL
restricted flooding, also the values h_v and v for the hash chain are appended to the
security header. Note that the signature must comprise only immutable fields. The
security header is returned to the calling communication stack, which has to append
the header to the packet before sending.

receive

inputs:
Packet p

outputs:
uint ReturnCode;

exceptions:
InvalidPacket

Checks if a recently received flood message is correct. Returns 0 (or nothing) if the
packet was correct or an appropriate error code that may indicate a certificate error,
signature error, timestamp error, GDA error, TTL error. Note that the input packet
includes all received data, which also includes a SecurityHeader if the sender has
successfully signed the packet.

forward

inputs:
Packet p

outputs:

50

5 Secure Communication Module

SecurityHeader secHeader;
uint ReturnCode;

exceptions:
InvalidPacket

Forwards a recently received flood message. In case of TTL-based flooding, the new
hash value v is calculated. The method returns a new SecurityHeader which replaces
the old one, even though signature and certificate are not changed.

5.3.5 Performance

Again, one of the potential performance issues derives from the fact that potentially
large amounts of signatures have to be verified, which has an impact on the processor
if many verifications per time unit have to be done (see performance discussion of
secure beaconing in Section 5.2.5).

5.3.6 Discussion

Advantages/Achievements:

With the security mechanisms applied, we achieve that only nodes with valid creden-
tials (i.e. "‘insiders"’ with valid, certified pseudonyms) are accepted and only messages
originating from such nodes are forwarded. Moreover, the applied signature also en-
sures the integrity of message content in transit. Time stamps help to prevent replay
attacks which could otherwise be carried out also by outsiders without valid creden-
tials.

Disadvantages/Drawbacks:

Both getting the own location correctly and assuming global time synchronisation are
not trivial requirements. Of course, retrieving location and time is not within the pur-
pose of the secure flooding component - e.g. a secure time base is to be provided by
the hardware security module. But still, the secure flooding relies on it, and thus also
has to note this as a potential drawback.

In addition, certain additional attacks of insiders and outsiders are not yet addressed.
For instance, an attacker could try to disturb network availability by injecting messages
at high frequency or he could jam the signal and still achieve more than only local
impact.

51

5 Secure Communication Module

5.4 Secure Routing Component

5.4.1 Purpose of component

Assumptions on communication model

While various applications in vehicular communication utilize broadcast mechanisms
by nature, there are also other ones that need a unicast connection like vehicle-to-
vehicle chatting. For other applications, the network layer first needs to transport mes-
sages to a certain area using single-path, hop-by-hop forwarding, and then distribute
the message e.g. in a certain destination region.

Because vehicular networks have to deal with extremely mobile node, researchers
have shown that topology-based routing mechanisms are not well suited for this net-
work type. In contrast, position-based routing performs much better, since it does not
require setup of end-to-end routes and is better suited to the application domain, where
locations play a vital role.

Security Goals

The security component dealing with routing should assure the following goals:

• The sender of a message is a valid participant of the network

• Messages must not be manipulated by any forwarding node

• Messages should not be rerouted in the network

5.4.2 Prerequisites

The component requires access to several services from other components. In partic-
ular, it relies on an established identity and credentials management, which allow for
getting current credentials or even to have basic operations done there. For instance,
the component does not care about the (current) identifier of a vehicle, its credentials
or implemented cryptographic functions – it just uses the data and functions supplied
in the corresponding components (see Section 3).

If pseudonyms are in use as described in the Privacy Module (see Section 4), the
way of signing and verifying messages does not change - the privacy and identity
management modules have to take care which keys to use.

As we assume a geographic routing protocol, the component also needs a means to
retrieve the node’s own position for reference purposes. It depends on the setup of
the system, where the position is drawn from. Without special accuracy or security
considerations, this may be the on-board GPS.

52

5 Secure Communication Module

Secure Routing

Geographic
Routing

Application

Packet
Inspector Monitor

MAC

Figure 5.2: Secure Routing hook and control interface

The following list summarizes the dependencies:

• A mechanism to determine the key to use

• An interface to sign data

• An interface to verify signed data

• An interface to get own location

• An interface to get a global, loosely synchronized time

5.4.3 Interfaces and Services

The component provides an interface which allows the component to be hooked into
the process of routing. Therefore, the component is notified when packets are to be
sent, received, or forwarded.

The messages need to be truly handed over to the secure routing component, since
it requires total control over the further processing of such packets. For example, the
secure routing component may decide whether it is secure to forward packets or if they
are manipulated and should be discarded.

Therefore, the component offers a notification and control interface for interaction with
the routing itself. The routing consults the component at defined occasions during the
routing process. For example, the decision to forward a message to a certain neighbor
must be checked by the secure routing component to avoid forwarding packets to a
malicious neighbor.

The potential interfaces are depicted in Figure 5.2.

53

5 Secure Communication Module

5.4.4 Description

For the operation of the secure routing component, there are a number of specific
states that have to be distinguished. For example, an application of the current node
may send a message, and the router will forward it accordingly. In this case, specific
actions have to be conducted, e.g. attaching signature and certificate, to provide evi-
dence for other nodes that the sender is valid. In contrast, packets in transit that have
to be forwarded must be verified. Moreover, more sophisticated attacks by corrupted
insiders should be detected as well.

At the source of a message:

When a message is issued by an application that needs to be routed to a destination,
the secure routing component adds a certificate and a signature over all immutable
fields.

At an intermediate node:

To inhibit forwarding of invalid messages, the secure routing component at intermediate
nodes has to verify the signature of a packet, before routing is performed.

At the destination node:

To prevent reception of bogus messages, the destination node has to verify the signa-
ture of a packet, before the packet is accepted.

If any of these checks fails, the message must not be forwarded. Regarding local
reception, it is either discarded immediately or marked as invalid by the component.
The choice depends on whether applications also want to process invalid packets and
should be configurable.

Secure Routing API

Data structures

Like for every secure communication component, the packet structure is mainly defined
by the communication system itself. However, the secure routing requires some basic
information in the packet. Moreover, certain data types like the node identifier are only
placeholders for their actual implementation in the stack.

54

5 Secure Communication Module

Packet {
Identifier source
Location destination
<Optional Headers>
<SecurityHeader>

Data data
}

SecurityHeader {
Signature sig_SKX
Certificate cert_PKX
Time t_c

}

The following functions are hooked into the communication flow:

send

inputs:
Packet p
Identifier designatedNextHop

outputs:
SecurityHeader secHeader;
uint ReturnCode;

exceptions:
InvalidPacket

Sends a routed message which is created by the own node. Time, signature, and
a certificate is added (by use of ID Management API). Note that the signature must
comprise only immutable fields. The designatedNextHop is the node to which routing
would forward the message. If this node is not trustworthy according to the findings of
the secure routing module, the ReturnCode indicates that the packet can not be sent
to the given next hop node.

receive

inputs:
Packet p

outputs:
uint ReturnCode;

exceptions:
InvalidPacket

55

5 Secure Communication Module

Checks if a recently received message is correct. Returns 0 (or nothing) if the packet
was correct or an appropriate error code that may indicate a certificate error, signature
error, timestamp error. Note that the Packet includes the SecurityHeader in this case.

forward

inputs:
Packet p
Identifier designatedNextHop

outputs:
SecurityHeader secHeader;
uint ReturnCode;

exceptions:
InvalidPacket

Forwards a recently received message. The method returns a new SecurityHeader
which replaces the old one, even though signature and certificate are not changed.

isNeighborTrusted

inputs:
Identifier node

outputs:
boolean trusted;

exceptions:
NeighborUnknown

This method allows to check whether the secure routing currently sees the node in
question as trusted or not. The routing must use this function to determine whether a
potential forwarder is trusted or not. The forward and send methods may decide not
agree (which is to be configurable), if the routing decides to define a next hop that is
not trustworthy.

5.4.5 Performance

Whenever asymmetric crypto operations are involved, an attack may be launched by
massive injection of invalid packets. In this case, the sender can provoke a denial of
service within his local radio range.

56

5 Secure Communication Module

5.4.6 Discussion

By adding basic authentication and integrity mechanisms, potential attacks can be
reduced, particularly by excluding illegal participants from the multi-hop communica-
tion.

However, many insider attacks are not covered by the current status. Due to billions
of vehicles on the roads, the potential for malicious insider attacks is not neglectible.
Therefore, additional mechanisms must be introduced in the future.

57

6 In-car Security Module

6.1 Overview

The in-car security module protects the interface of the wireless communication system
to the in-car networks. Besides controlling the access to vehicle sensor data and
services it also comprises mechanisms to ensure a correct provision of the data and
services to the V2V/V2I applications.

The in-car security module provides:

• A firewall to control the flow of data and the access to services: who has ac-
cess to what function/service on which in-car bus-system and what in-car func-
tion/service is allowed to send data out of the vehicle.

• An intrusion detection system (IDS) to monitor and check the status of the in-
car networks to detect attacks via the communication system (e.g.; unusual fre-
quency of requests, wrong order of requests, etc.) and to detect attacks via the
in-car system (in this case, the data provided by the vehicle is not correct).

Based on the status of the in-car networks the IDS is able to dynamically adapt the
configuration of the firewall: This adaptation ranges from denying access for selected
applications to blocking the entire access to the in-car networks.

The structure of the in-car security module is depicted in figure 6.1.

The in-car security module consits of two components: firewall and IDS. Both com-
ponents provide specific APIs (firewall API, IDS API). The in-car communciation API
is an abstraction of the parts of the component APIs which are used by the V2V/V2I
applications. The purpose of the adaption layer is the integration of the in-car security
module into the vehicle network via the AUTOSAR standards.

Given the performance contraints in todays vehicle ECUs, the firewall component is
designed as a network layer firewall (no application data is checked). The same holds
for the IDS, by default, only header information is evaluated.

58

6 In-car Security Module

Figure 6.1: In-car security module

6.1.1 Interfaces and Services

The in-car security module has the following interfaces for access which comprise the
connection process and the data exchange phase:

Session_ID incar_connect (App_ID, App_Timestamp, Sensor_ID)

This function registers an application with the in-car security module to access the
specified sensor. The application uses its ID for identification and transmits a times-
tamp for an additional possibility to check future communication. Sensors can be
sources or sinks of information, e.g. a GPS positioning sensor or a display device
for warning messages. Thus, the type of data which is transmitted depends on the
selected sensor.

The return value is a Session_ID, which is used to identify the application in future
communication. A valid Session_ID has a value greater than 0; if the application is not
granted access a Session_ID ≤ 0 is returned.

For each tuple of App_ID and Sensor_ID a separate Session_ID is assigned, which is
stored in an internal session table of the in-car security module.

Bool incar_disconnect (Session_ID, App_ID, App_Timestamp, Sensor_ID)

59

6 In-car Security Module

This function deregisters the access of an application for a specific sensor. This sensor
is checked out from the module and the tuple is removed from the session table.

The application uses its App_ID and the Session_ID for identification and transmits the
initial timestamp for an additional verification.

The return value is true if Session_ID, App_ID and App_Timestamp match with the
internal session table of the in-car security module, false else wise. Deregistration
takes place in any case.

Data incar_data_retrieve(Session_ID)

This function retrieves the current data value, e.g. the current GPS position, for a spec-
ified Session_ID, based on a pull concept. The Session_ID comprises the selection of
the sensor and its data, as described before.

Prerequisite is a successful previous registration and a valid Session_ID.

Void incar_data_transmit(Session_ID, App_data)

This function transmits the App_data value for the specified Session_ID, e.g. a warning
message.

Prerequisite is a successful previous registration and a valid Session_ID. The App_data
is checked by the in-car security module, e.g. for correctness of the format and speci-
fications (see Sec. 6.3).

6.2 In-Car Security Firewall Component

6.2.1 Purpose of component

The firewall component of the in-car security module is designed to protect the in-car
network against attacks from the wireless telematic/C2XC interface. For this reasion a
packet filter will be implemented based on the source-, destination adress and if avail-
able the destination service/port. The firewall packet rule type table shall be updated
by the component Intrusion Detection System. The Intrusion Detection System can
add new firewall rule type table entries to deny specific target or destination adresses.
This includes also that specific services are denied.

60

6 In-car Security Module

6.2.2 Prerequisites

The firewall required different types of automotive communication and protocol stacks,
as in general the in-car security Module. A running autosar will fulfill this require-
ments.

6.2.3 Interfaces and Services

The firewall component offers in general the following interfaces and services:

• API to send, receive and register messages via the in-car security module api

• API for the update of the packet rule type table. The access is limited to the
Intrusion Detection System

6.2.4 Description

In general a firewall is a device which separates two or more networks with different
security levels by means of a packet rule type table. In our case it is the wireless
telematic interface and the in-car-networks. The telematic network can be seen as the
insecure one and the in-car networks are the secure ones.

The SeVeCom firewall will be a packet based firewall. For this reason it will inspect
the header data of each message that targets the in-car network. According to the
internal packet rule type table a message can pass the firewall or will be denied. The
firewall denies all traffic between the wireless telematic interface and the various in-car
networks by default, e.g. FlexRay, CAN, LIN or MOST.

The packet rule type based table must be known for all possible configurations during
the compile time. The table should be static due to reduction of complexity from the
telematic application point of view. The packet rule type table can be updated based on
the IDS internal status. Via a set of api functions the IDS can deny dedicated packets
or block the whole traffic via the wireless interface.

The telematic application must register to the firewall via the in-car module if the appli-
cation wants to send or receive messages to/from the in-car network. Due to the pre
configured packet rule type table in the denied state the firewall will set the inactive
rule to the active state and allows this kind of traffic. This allows a later security en-
hancement with signature based application registration. After this step the telematic
application can send or receive messages from the in-car network.

61

6 In-car Security Module

6.2.5 Performance

Today the required performace of the firewall ist not so clear. From US projects the
number of 5000 signature proofs per second is known. What this implies for the needed
performance of the in-car firewall can only be estimated. We assume that 10% of
the signature proofs end in a communcation traffic target to the in-car networks at
maximum.

6.2.6 Related Work

The firewall component is integrated into the vehicle network via the AUTOSAR stan-
dards (www.autosar.org). Some aspects of telematic gateway are also discussed in
the EASIS project, see www.easis.org.

6.2.7 Discussion

To enhanced the security of the in-car network the firewall technique used in IT based
systems will be used. The processing power and resources avalaible for the firewall
is in general limited for embedded systems. A so-called Application-Layer Firewall will
not be considered, because the telematic application will take over this duty, see D3.1
for details. A possible add-on could be a signature based registration for accessing the
in-car network via the firewall.

6.3 In-Car Security Module Intrusion Detection System

6.3.1 Purpose of component

The Intrusion Detection System (IDS) has the purpose to automatically detect un-
wanted manipulations of data. Hence, in addition to preventive measures, the IDS
is supposed to provide real-time protection and automatic attack detection of ongoing
attacks and manipulation attempts. In a second step the IDS can be extended towards
an Intrusion Prevention System (IPS), which does not only allow the detection of at-
tacks but also supports measures of reaction in order to stop an attack once it has
been detected, or mitigate the negative effects for the system.

62

6 In-car Security Module

6.3.2 Prerequisites

In general, a basis to detect the possible attacks has to be defined adequately in
advance. Depending on the architecture and techniques that are implemented by the
IDS, different prerequisites apply. Mainly the knowledge base of the IDS needs to be
available for the IDS to ensure proper operation. This knowledge has to be included
into the system before operation.

6.3.3 Interfaces and Services

The IDS is connected to the packet rule type table of the firewall, in order to enable
updates of the configuration in case of an attack or detected anomaly.

6.3.4 Description

The IDS will contain an anomaly based approach: Anomaly Based Systems contain
knowledge about the normal behaviour of the system. The system continuously mon-
itors the behaviour and generates an alert, once an action which is unusual and not
part of the normal behaviour is recognized. Anomaly Based Systems can either rely
on knowledge which is acquired within a learning phase and further on used as normal
behaviour, or the normal behaviour of the system is specified manually as an input for
the IDS. The latter solution requires more effort for definition and specification of the
system but provides a lower rate of false positives.

The IDS has access to the configuration of the firewall. Especially, it is allowed to
change the configuration adequately once the status of the IDS requires it. This can
be the case if an intrusion is detected.

Moreover, the IDS has access to different information sources inside the vehicle. These
information sources will observe the functionality of dedicated components of the ve-
hicle and monitor the activities during operation. For the analysis of the data which is
monitored, two different approaches are considered:

1. All data collected by the information sources is transferred to the IDS which is
responsible for further processing of the data. This keeps the information sources
fairly simple and cheap. All intelligence for the intrusion detection is contained in
the IDS.

2. Before transferring data to the IDS the information sources themselves perform
some analysis and pre-processing of the data. Therefore each information source
is equipped with knowledge about the component which is observed. This knowl-
edge allows to perform intelligent detection of attacks on the information source
itself.

63

6 In-car Security Module

For the detection of intrusions the IDS or the information sources will have access to
an IDS information base which contains necessary data like configurations, etc. for
the system to decide upon. If the data provided by IDS information sources is not
consistent with the data derived from the information base, an alert is raised. To raise
an alert, the IDS establishes a connection to the firewall configuration and performs
a change of the configuration which adequately reflects the detected inconsistency. If
necessary, current connections to the vehicle which are permitted by the firewall can
be de deactivated. This allows the IDS to react when an intrusion has been detected.
Based on this system model, the detection is performed and afterwards the event is
serialized and prepared for logging. The detection is implemented by the IDS through
the analysis of data packet headers. However, an extension for the additional analysis
of data contents is possible with respect to the performance situation of the system.

6.3.5 Performance

The system needs to be able to perform all information-collection from the sensors,
processing of the data and the detection of attacks in real-time. Especially for the first
approach the load on the bus system is fairly high. This has to be taken into account
for the development of the final deliverables.

6.3.6 Related Work

The in-car security module is integrated into the vehicle network via the AUTOSAR
standards (www.autosar.org).

6.3.7 Discussion

The IDS improves the security status of the in-vehicle architecture. In general the in-
clusion of an IDS into today’s vehicle architectures requires the availability of sufficient
processing power and resources for the system. As described above these resources
can be distributed over the system or exclusively located in the IDS itself.

64

7 Crypto Support Module

7.1 Overview

The general purpose of the Crypto Support Module is to provide the implementation
of the cryptographic operations needed by the applications running on the OBU. The
applications can call these cryptographic operations through the APIs provided by the
components of the Crypto Support Module. As illustrated in Figure 7.1, there are two
components in this module: the OBU Crypto Component and the HSM Component.
The OBU Crypto Component is a software component running on the OBU that imple-
ments the public key cryptographic operations, such as digital signature verification,
and provides a wrapper for the private key operations. The private key cryptographic
operations themselves, such as digital signature generation, are implemented in the
HSM Component, which is an independent tamper-resistant device connected to the
OBU. Management applications can directly call some functions of the HSM API to
perform management operations, such as initializing the device, revoking its root pub-
lic keys, and revoking the device itself. Sections 7.2 and 7.3 give more details about
the OBU Crypto Component and the HSM Component, respectively.

OBU Crypto API

OBU Crypto
Component

HSM API

HSM
Component

Crypto functions
offered to the
applications

(e.g., generate and
verify signatures)

HSM management
functions

(e.g., initialize and
revoke device)

Private key
operations

offered by the
OBU Crypto API
are implemented

by the HSM

Crypto Support Module

Figure 7.1: Components and interfaces of the Crypto Support Module

65

7 Crypto Support Module

7.2 OBU Crypto Component

7.2.1 Purpose of component and prerequisites

The purpose of the OBU Crypto Support Component is to provide a general inter-
face to cryptographic functions for the applications, and to implement those crypto-
graphic functions that use only public information (i.e., public keys). The cryptographic
functions that use private information (i.e., private keys) are implemented in another
component, called HSM Component that, in the ideal case, is realized as a separate
hardware device that also provides physical protection measures to safe-guard the
sensitive private information. Thus, the OBU Crypto Component relies on the HSM
Component and uses the services provided by the HSM Component through the HSM
API.

The OBU Crypto Component can be implemented as a software module running on the
OBU. This may be preferable to integrating it with the HSM Component for performance
reasons, as the OBU may have more computing resources than the typical devices that
can function as a HSM. Note also that the vehicle needs to verify digital signatures,
which is a public key operation, with a potentially very high rate. Therefore, it makes
sense to implement the public key cryptographic operations in the OBU rather than in
the HSM.

7.2.2 Interfaces and Services

The OBU Crypto Support Component provides cryptographic services, including digital
signature generation and verification and public key encryption and decryption, as well
as hash value computation through the following API:

authenticateData

inputs:
uint KeyID;
byte* Data;
uint DataLength;
byte TimeStampLength;

outputs:
uint64 Timestamp;
byte* SignedHash;
uint SignedHashLength;

exceptions:
UnknownKeyID;
WrongKeyType;

66

7 Crypto Support Module

WrongTimeStampLength

Timestamps and digitally signs the given input data with a given credential as specified
in the HSM Component description. This is a wrapper function, the timestamp and
the signature are generated in the HSM Component(for a more detailed description,
see the signWithShortTimestamp function in the HSM Component API). The possible
values of TimeStampLength are 0 and 1 (shortTimeStamp, longTimeStamp).

verifyAuthenticatedData

inputs:
privateKey VerificationKey;
byte* Data;
uint DataLength;

outputs:
byte ReturnCode

exceptions:
UnknownKeyID;
WrongKeyType;

Verifies the authenticity of the given authenticated data by verifying the digital signature
on the data. The data may be timestamped or not. If the verification is successful, it
returns a 0 ReturnCode.

encryptPlainTextData

inputs:
privateKey EncryptionKey;
byte* Data;
uint DataLength;

outputs:
byte* EncryptedData
uint EncryptedDataLength

exceptions:
WrongKeyType;

Protects for confidentiality of (encrypts) the given data, and returns the encrypted
data.

67

7 Crypto Support Module

decryptEncryptedData

inputs:
uint KeyID;
byte* EncryptedData;
uint EncryptedDataLength;

outputs:
byte* DecryptedData;
uint DecryptedDataLength;

exceptions:
UnknownKeyID;
WrongKeyType;
DecryptionFailure;

Decrypts (obtains plain text data from) encrypted data. This is a wrapper function, the
decryption is performed by the HSM Component(for a more detailed description, see
the decrypt function in the HSM Component API).

generateRandomData

inputs:
uint NumberOfBytes;

outputs:
byte* RandomBytes;
uint RandomBytesLength;

exceptions:
--

Generates random data. This function is a wrapper function to the HSM Component
(for a more detailed description, see the getRandom function in the HSM Component
API).

generateHashValue

inputs:
byte* DataToBeHashed;
uint DataToBeHashedLength;

outputs:
byte* HashValue;

exceptions:
--

Generates the one-way hash of the input data.

68

7 Crypto Support Module

7.3 HSM Component

7.3.1 Purpose of component

Implementing security services for vehicular communications requires the vehicles to
store sensitive data [MRJPH05], such as cryptographic keys, event logs, etc. It must
be assumed that potentially malicious parties, such as maintenance service providers
or even the vehicle owner, can have unsupervised access to the vehicle for extended
periods of time. In addition, these potentially malicious parties may have incentives to
compromise the sensitive data stored by the vehicle. For these reasons, the sensitive
data needs to be protected from unauthorized access by physical means.

In SeVeCom, we envision that the vehicles are equipped with a Hardware Security
Module (HSM). The purpose of the HSM is to store sensitive information within the
vehicle and to provide physical protection measures to safeguard sensitive information.
This mainly means the storage and the physical protection of sensitive cryptographic
keys (e.g., private keys for signature generation). In addition, the HSM must be able
to perform cryptographic operations (e.g., generate digital signatures) with the stored
keys in order to ensure that sensitive information never needs to leave the physically
secured environment provided by the HSM.

At a high level, the HSM serves as the basis of trust in the SeVeCom security architec-
ture. In particular, without the physical protection provided by the HSM, the signature
generation keys could be easily compromised, and then used to generate fake mes-
sages that appear to be authentic. Hence, in that case, the vehicles could not trust
even the signed messages, and therefore, the entire security architecture would be
more or less useless.

7.3.2 Prerequisites

The HSM is the heart of the SeVeCom security architecture. It does not rely on other
components, but rather other components, such us the secure beaconing, commu-
nications, and routing protocols use the HSM, mainly for digital signature generation
purposes.

The HSM must satisfy some timing requirements that are determined by the applica-
tions that use it. The most stringent timing requirements are determined by the periodic
beaconing. Periodic beaconing means that the vehicle periodically broadcasts its po-
sition, speed, and direction of movement, and in this way, it informs nearby vehicles
about its presence. Many vehicle safety applications (e.g., collision avoidance, lane
merge assistant, etc.) rely on this mechanism. These periodic beacon messages need
to be digitally signed, which means that typically, the HSM must be able to generate a
few tens of digital signatures per second.

69

7 Crypto Support Module

Note that the vehicle may be required to verify an order of magnitude more digital sig-
natures when receiving beacons from nearby vehicles. However, signature verification
is a computation that uses only public information (i.e., public keys), and therefore it
can be performed outside of the HSM, typically, on the OBU of the vehicle.

7.3.3 Interfaces and Services

The main service provided by the HSM to the components that use it is the generation
of digital signatures. In order to support this, the HSM also provides key management
services. In particular, the HSM must be able to generate (or import) the private keys
corresponding to the anonymous public keys of the vehicle. Furthermore, the HSM
must also be able to process revocation commands originating from a trusted author-
ity.

In addition to the digital signature generation service, the HSM performs time stamping.
This means that the HSM is equipped with a real-time clock, and before signing a
message, it inserts a timestamp in the message. The timestamp is output by the
HSM together with the generated signature. Furthermore, the HSM can also perform
decryption of encrypted messages with the private decryption keys that it stores.

Finally, the HSM may offer a secure storage service for logging purposes (e.g., to
implement event data recording functions). Actually, the memory of the HSM may
not be enough to store a large amount of data, and therefore, the data are stored in
external storage in an encrypted form in such a way that only the HSM can decrypt
the data. In this specification of the baseline architecture, we do not further specify the
secure storage service of the HSM.

The HSM has some hardware interfaces and it has an Application Programming Inter-
face (API). The hardware interfaces include an interface for power supply and an I/O
interface through which the HSM can interact with other in-vehicle components, such
as the OBU of the vehicle.

The API is the top level software interface of the HSM through which the services
provided by the HSM can be reached by the components that use the HSM. In other
words, the API provides the means to invoke the digital signature and time stamp-
ing service, the decryption service, and the key management service of the HSM. A
detailed description of the API of the HSM is provided in Subsection 7.3.4.

70

7 Crypto Support Module

7.3.4 Description

HSM architecture

The hardware architecture of the HSM is illustrated in Figure 7.2. The HSM has a
CPU, a memory module, and some non-volatile storage. In addition, in order to ensure
the freshness of the cryptographically protected messages produced by the HSM, it
must also have a real-time clock, and consequently, a battery module that ensures the
independent operation of that clock. Finally, the HSM also has a hardware random
number generator that is used for key generation purposes.

CPU

Memory

Tamper resistant packaging

Real-time
clock

BatteryI/O
 in

te
rf

ac
e

+
po

w
er

 su
pp

ly

Non-volatile
storage

Random
number

generator

Figure 7.2: Architecture of the HSM

Level of physical protection

We require the HSM to be physically protected against tampering; indeed, this prop-
erty of the HSM is where trust in it is derived from. The physical protection of the HSM
should ensure at least tamper evidence. However, this is not enough, as regular in-
spection of the vehicles is rather infrequent (e.g., in some countries it happens in every
second year), which results in a large vulnerability window. Therefore, we also require
that the physical protection of the HSM also ensures some level of tamper resistance.
We understand that high-end tamper resistant hardware modules are very expensive,
therefore, in order for our baseline architecture to be practically feasible, we require
only a minimal level of tamper resistance that can be achieved with special packaging
and coatings.

71

7 Crypto Support Module

Time stamping and digital signature generation

The main services provided by the HSM are the time stamping and the digital signature
generation services. These services are always provided together. This means that
every signature generated by the HSM contains a timestamp value. We require this
joint provision of services because we do not want the HSM to be capable of interpret-
ing the messages that it signs. In other words, if the HSM generated signatures without
including its own timestamp, then it should be able to check timestamps that are in-
serted into the messages by the potentially insecure applications. However, different
applications may use different message formats, and thus, the HSM must be able to
interpret all those message formats. This may easily lead to interoperability problems.
We avoid this by requiring that the HSM always inserts its own trusted timestamp value
in the signatures that it generates.

When invoking the time stamping and digital signature generation service, the HSM
is provided with the data to be signed and the key identifier of the private signature
generation key to be used. The HSM inputs these data through its I/O interface. Using
the received key identifier, the HSM retrieves the signature generation key and the
corresponding hash algorithm, signature algorithm, and parameters from its internal
memory. Then, it attaches the current timestamp to the data to be signed, computes
the hash value of the time stamped data, and generates the digital signature on the
hash value. Formally, the HSM computes

σ = signK−1(h(data|T))

where K−1 is the private signature generation key, data is the data to be signed, T
is the current timestamp value, h is the hash function used, sign is the signature gen-
eration function used, and | denotes concatenation. The HSM outputs the resulting
signature σ and the timestamp value T , which can be attached by the OBU to the
message that is signed before sending that message.

As the HSM does not check the consistency and the validity of the data that it signs,
it is not necessary to supply the entire message to be signed to the HSM. Instead,
the HSM can receive only the hash value of the message. In that case, the HSM
generates a digital signature on data = h(message), but this is entirely transparent to
the HSM. At the same time, applications that verify digital signatures must be aware of
the fact that the input data of the above signature computation was the hash value of
the message.

Key management

The HSM maintains five types of keys: (i) short-term signature generation keys that
are typically used to authenticate the short-term pseudonyms used by applications

72

7 Crypto Support Module

running on the vehicle, (ii) short-term decryption keys that are used to decrypt en-
crypted messages intended to the applications running on the vehicle, (iii) a long-term
signature generation key that is used to authenticate the real identity of the vehicle,
(iv) a long-term decryption key that is used to decrypt encrypted messages intended
to the vehicle itself, and (v) two long-term root public keys that are used to verify the
authenticity of commands (e.g., revocation of the HSM) sent by the authorities to the
HSM.

Note that as certificates do not contain private data, they are not stored inside the
HSM. Instead, the certificates that correspond to the private keys stored in the HSM are
maintained by a certificate management application in the OBU. For similar reasons,
the public keys that correspond to the private keys are not stored in the HSM either.

The keys that are maintained by the HSM are stored in an internal key database. An
entry in this database contains at least the following information:

• a key identifier;

• the value of the key;

• a reference to the cryptographic algorithm and associated parameters that should
be used with the key of this entry;

• some flags indicating the type of the key (e.g., long-term root public key, long-
term signature generation key, etc.), whether it is removable from the HSM or
not (short-term keys are removable in general, whereas the long-term keys are
not), and whether it is under update (long-term keys can be only updated, not
removed)

• a lock counter that indicates the number of applications currently using the key
of this entry.

Below, we first describe the management of the short-term keys, and then we briefly
specify the management of the long-term keys.

Short-term signature generation keys.

Typically, these keys are intended to sign the periodic beacon messages broadcast by
the vehicle. Thus, for privacy reasons, the public keys that correspond to these short-
term private keys may be certified in an anonymous manner by a trusted third party,
called the pseudonym provider. An anonymous certificate contains only the public key,
the validity period of the certificate, the identifier of the issuer, and the digital signature
of the issuer. In particular, it does not contain the identifier of the vehicle to which it has
been issued. Note, however, that this issue is entirely transparent to the HSM, as it
does not maintain certificates. This means that the logic that controls the pseudonym
usage and the periodic change of pseudonyms is not part of the HSM; rather the HSM

73

7 Crypto Support Module

only supports the pseudonym management application by generating short-term key
pairs, storing the private keys, and computing signatures (when requested).

The HSM can be instructed (through its API) to generate a new short-term signa-
ture key pair. For this, one must specify the corresponding signature algorithm (e.g.,
ECDSA) and its parameters (e.g., the curve and the base point in case of ECDSA), as
well as the hash algorithm that will be used for hashing the data before computing sig-
natures. When the HSM generates a new key pair, it creates a new entry in the internal
key database and it stores the private key together with the corresponding context in-
formation (type, algorithms, and parameters) and key identifier. The HSM outputs the
public key and it is the responsibility of the external applications running on the OBU to
obtain a certificate for it. However, certificate requests can be passed back to the HSM
for being authenticated, typically with the long-term master signature generation key of
the HSM. But again, this is transparent to the HSM, because certificate requests are
treated as any other data to be signed by the HSM.

The HSM can be instructed (through its API) to increase the lock counter of a short-
term private key. The HSM ensures that a key that has a lock counter greater than
zero will not be deleted from the database. This feature can be useful when multiple
applications use the same key concurrently. Note that locking is only meant to prevent
that one application deletes a key that is still used by another application, and not to
prevent the usage of the key for generating signatures. This means that a malicious
application cannot prevent other applications from obtaining signatures from the HSM.
At the same time, a malicious (or malfunctioning) application may increase the lock
counter of a key and “forget” to decrease the counter when it finished using that key,
which may result in a situation where the HSM cannot generate new keys as it has no
more memory to store them. This leads to a breach in privacy (as pseudonyms cannot
be refreshed) but not in security (as private keys still remain secret).

As the internal memory of the HSM is not infinite, we must also allow the deletion of
keys from the key database of the HSM. Thus, the HSM can be instructed (through
its API) to delete a short-term private key. The HSM then verifies the lock byte of the
given key. If it is zero, then the HSM removes the entire entry corresponding to the
given key from the key database. Otherwise, if the lock byte is greater than zero, the
entry is not deleted.

Short-term decryption keys.

The management of these keys is very similar to the management of the short-term
signature generation keys. The HSM can be instructed (through its API) to generate a
new short-term encryption key pair. For this, one must specify the corresponding en-
cryption algorithm (e.g., ECIES with HMAC-SHA1 and AES-CBC) and its parameters
(e.g., the key length of AES and the elliptic curve domain parameters). When the HSM
generates a new key pair, it creates a new entry in the internal key database and it

74

7 Crypto Support Module

stores the private key together with the corresponding context information (type, algo-
rithms, and parameters) and key identifier. The HSM outputs the public key and it is
the responsibility of the external applications running on the OBU to obtain a certificate
for it. Locking and deleting short-term decryption keys is done in the same way as for
short-term signature generation keys.

The long-term signature generation key.

The long-term signature generation key of the HSM is used to authenticate the real
identity of the HSM. This key is generated by the HSM before it begins its operation
(typically at manufacturing time), and it cannot be deleted or revoked just exchanged. If
it gets compromised, then the entire HSM must be revoked by a command that can be
authenticated with one of the long-term root public keys stored in the HSM. The long-
term signature generation key is exchanged if its certificate is to expire. The exchange
is executed in two steps. In the first step, the Identity Management Module initiates
the generation of a new long term signature generation/verification key pair. In the
first phase, the HSM only stores the new keys, but does not use them. In the second
step, the HSM deletes its old key, and starts to use the new key. The second step is
started by a swap command containing the new long-term signature verification key,
authenticated with one of the root keys.

The long-term decryption key.

The long-term decryption key of the HSM is used to decrypt encrypted messages
that are intended to the vehicle. This key is generated by the HSM before it begins
its operation (typically at manufacturing time), and it cannot be deleted or revoked
just exchanged. If it gets compromised, then the entire HSM must be revoked by a
command that can be authenticated with one of the long-term root public keys stored
in the HSM. The exchange process of the long-term decryption key is the same as the
long-term signature generation key’s.

The long-term root public keys.

There are two long-term root public keys in the HSM that are used to authenticate
commands sent by the authorities to the HSM. These keys are loaded into the HSM
during its initialization phase in a secure environment. Once the initialization phase
is completed, the HSM does not allow to load new root public keys in it. Still, it may
be necessary to revoke or update a root public key in the HSM for various reasons
(including the possibility of the corresponding private key being compromised). It would
be very impractical to require that in case of a root key revocation or update, the entire
HSM is replaced with a new one, because the same root public key may be used by a
potentially large number of HSMs. Therefore, we want to allow the revocation and the
update of root public keys through the API of the HSM.

75

7 Crypto Support Module

As we mentioned above, it may be possible that a root public key is compromised (i.e.,
its corresponding private key is leaked out), however, we assume that the event when
both root keys are compromised at the same time has an extremely small probability
(e.g., if they stored at physically distinct locations). In other words, we assume that in
practice, at most one root key is compromised at any time.

A root public key K can be revoked by sending a revocation message to the HSM
(through its API) that is signed with the private key corresponding to K. When one of
the root public keys, say K1, of the HSM is revoked, and only in this case, the HSM
accepts a new root public key K ′1 if K ′1 is signed and the signature can be successfully
verified with the other root public key K2 of the HSM.

The rationale behind this scheme is the following: If the private key corresponding to a
root public key K1 is compromised, it can only be used to revoke K1. In particular, the
other root key K2 cannot be revoked with the compromised key K1. In addition, if K1

is compromised, then the other root key K2 must be intact by assumption. Thus, it is
safe to accept a new root key K ′1 if it is signed and the signature can be verified with
K2.

HSM API

In this subsection, we specify the API of the HSM that offers the functions through
which the above described time stamping, digital signature generation, decryption,
and key management services can be invoked.

Algorithm identifiers, key identifiers, and flags

The HSM handles each supported cryptographic algorithm and its parameters as a
single bundle. Applications can refer to a bundle with an algorithm identifier, which
is a 16-bit unsigned integer. In this way, an algorithm identifier implicitly specifies the
parameters of the algorithm (e.g., the length of the key to be used with that algorithm).
Tables 7.2 and 7.3 list the supported algorithm and parameter bundles for signature
and encryption, respectively, and their associated algorithm identifiers.

Applications can refer to the keys stored in the HSM by key identifiers, which are 16-bit
unsigned integers generated by the HSM. Keys stored in the HSM have some flags
associated with them that specify their type (e.g., long-term root public key) and status
(removable or not). These flags are represented by the bits of a single byte as specified
in Table 7.1. Moreover, keys have an associated lock counter as described above.

By definition, there are 2 long-term root public keys in the HSM, which always have the
key identifiers 0x0001 and 0x0002, respectively. In addition, the HSM has a long-term
signature generation key and a long-term decryption key which have key identifiers
0x0003 and 0x0004, respectively. The key identifiers in the range 0x0005-0x00FF are

76

7 Crypto Support Module

Bit no. Meaning Possible values
1-4 key type 0x0 = long-term root public key

0x1 = long-term signature generation key
0x2 = long-term decryption key
0x3 = short-term signature generation key
0x4 = short-term decryption key

5 is_removable 0 = no
1 = yes

6 under_update 0 = no
1 = yes

7-8 n/a n/a

Table 7.1: Specification of the bits in the flags byte associated to the keys stored in the
HSM.

reserved for future use. The remaining key identifiers in the range 0x0100-0xFFFF can
be assigned to the short-term private keys generated and stored in the HSM.

In addition, the long-term keys are always non-removable (i.e., their is_removable flag
is set to 0), while the short-term keys are removable by default. At the same time, the
short-term keys can be locked and unlocked by the applications at will.

Data structures

We define only the following two data structures that we use in the specification of the
API of the HSM:

struct {
uint AlgorithmID;
byte* PublicKeyValue;

} public_key;

struct {
uint KeyID;
byte Flags;
uint LockCounter;

} key_info;

The public_key data structure contains a pointer to a public key value and an algorithm
identifier that specifies the bundle of algorithms and parameters associated with the
given key. Recall that the algorithm identifier implicitly specifies the length of the key,

77

7 Crypto Support Module

that is why the public_key data structure does not contain an explicit PublicKeyLength
field.

The key_info data structure contains a key identifier, they flags, and the lock counter
value associated to a given key.

signWithShortTimestamp

inputs:
uint KeyID;
byte* Data;
uint DataLength;

outputs:
uint32 Timestamp;
byte* SignedHash;
uint SignedHashLength;

exceptions:
UnknownKeyID;
WrongKeyType;

This function inputs a key identifier and some data, and generates a digital signature
on the data using the private key associated with the key identifier. As explained earlier,
the HSM always generates signatures together with a timestamp, hence, besides the
signature itself, this function also outputs the timestamp value that has been used in the
signature generation process. Specifically, this function uses a short timestamp, which
is a 32-bit unsigned integer that represents the seconds that elapsed since 0:00am
January 1, 1970.

This function throws an exception if it is called with an unknown key identifier or with
a key identifier that refers to a key that cannot be used for signature generation. This
latter situation may occur when the key identifier refers to a long-term root public key
or a decryption key.

signWithLongTimestamp

inputs:
uint KeyID;
byte* Data;
uint DataLength;

outputs:
uint64 Timestamp;
byte* SignedHash;
uint SignedHashLength;

exceptions:

78

7 Crypto Support Module

UnknownKeyID;
WrongKeyType;

This function works in the same way as the signWithShortTimestamp function except
that it uses a long timestamp value, which is a 64-bit unsigned integer that represents
the microseconds that elapsed since 0:00am January 1, 1970.

decrypt

inputs:
uint KeyID;
byte* EncryptedData;
uint EncryptedDataLength;

outputs:
byte* DecryptedData;
uint DecryptedDataLength;

exceptions:
UnknownKeyID;
WrongKeyType;
DecryptionFailure;

This function is used to decrypt encrypted messages. It inputs the key identifier of the
decryption key to be used and the encrypted data itself. Upon successful completion,
the decrypted data is returned.

This function throws an exception if an unknown key identifier is supplied, or the key
identifier refers to a key that cannot be used for decryption. In addition, an exception
is thrown if the decryption operation fails due to wrong formatting or invalid message
authentication (depending on the type of encryption used).

generateKeyPair

inputs:
uint AlgorithmID;

outputs:
uint KeyID;
public_key PublicKey;

exceptions:
UnknownAlgorithmID;
NotEnoughMemory;

This function can be used to generate a new short-term key pair in the HSM. The appli-
cation must specify an algorithm identifier, which specifies the cryptographic algorithm

79

7 Crypto Support Module

and implicitly specifies the parameters of that algorithm that are needed for the key pair
generation. Once the new key pair is generated, the HSM also generates and assigns
a new key identifier to it. Then the HSM stores the private key in its internal memory,
and outputs the key identifier and the public key.

This function throws an exception if the supplied algorithm identifier is not known or
there is not enough free memory in the HSM to store the key to be generated.

removeKey

inputs:
uint KeyID;

outputs:
--

exceptions:
UnknownKeyID;
KeyIsNotRemovable;
KeyIsLocked;

This function allows an application to remove a key from the internal memory of the
HSM, and in this way, to create enough free space to store newly generated keys.
The caller must supply the key identifier of the key to be removed. Upon successful
completion of this call, the HSM deletes the given key and returns nothing.

This call throws an exception if the supplied key identifier is unknown, or the key iden-
tifier refers to a key that is not removable from the HSM, or the key identifier refers to a
key that is removable but currently locked in the memory by some applications.

increaseLockCounter

inputs:
uint KeyID;

outputs:
--

exceptions:
UnknownKeyID;

This function allows an application to increase the lock counter of a key in the memory
of the HSM. Locking means that the HSM ensures that a key with a lock counter greater
than zero will not be removed from the device. It is also ensured that the lock counter
cannot overflow, meaning that it has a maximum value and it cannot be increased
beyond that maximum. The input to this function is the key identifier of the key and
upon successful completion of the call nothing is returned.

This function throws an exception if the supplied key identifier is unknown.

80

7 Crypto Support Module

decreaseLockCounter

inputs:
uint KeyID;

outputs:
--

exceptions:
UnknownKeyID;

This function allows an application to decrease the lock counter of a key. It is ensured
that the lock counter cannot become smaller than zero. This function inputs the key
identifier of the key, and upon successful completion of the call nothing is returned.

If the supplied key identifier is unknown, then an exception is thrown.

getKeyInfo

inputs:
uint KeyID;

outputs:
key_info KeyInfo;

exceptions:
UnknownKeyID;

This function can be used by applications to read the flags and lock status of a key out
of the HSM. It returns a key_info data structure that contains the requested informa-
tion.

If the supplied key identifier is not known, then an exception is thrown.

getKeyRingInfo

inputs:
--

outputs:
key_info* KeyRingInfo;
uint KeyRingSize;

exceptions:
--

This function allows an application to get information about all the keys stored in the
HSM with a single call. It returns the number of keys (i.e., the size of the key ring) and a
pointer to an array of key_info data structures that contain the information associated
with the keys.

81

7 Crypto Support Module

getChallengeForTimeSynch

inputs:
--

outputs:
byte[16] Challenge;

exceptions:
InvalidState;

This function supports the synchronization of the internal secure clock of the HSM with
an external trusted clock. Such a synchronization usually works in two steps: (i) The
HSM generates an unpredictable random challenge using its internal random number
generator, starts an internal timer, and outputs the challenge. The challenge is sent
to the trusted time source. (ii) The trusted time source generates a message that
includes the current time t and the digital signature of the time source computed over
the current time and the challenge of the HSM. This message is sent back to the HSM,
which verifies the signature. If the signature is valid and the time τ elapsed since the
generation of the challenge is shorter than a pre-specified threshold, then the HSM
sets its internal clock to t+ τ .

The getChallengeForTimeSynch function is used in the above process to request the
generation of the challenge. As the HSM has a single internal clock, it does not sup-
port parallel runs of the above protocol. Conceptually, the HSM can be in two dif-
ferent states: normal and challenge_issued. When the getChallengeForTimeSynch
function is called in the normal state, the HSM generates a 128-bit challenge, stores
it internally, starts its internal timer, outputs the challenge, and changes its state to
challenge_issued. When the HSM receives a valid response from the trusted time
source or its internal timer expires, it returns to the normal state and deletes the chal-
lenge from its internal memory.

An exception is thrown if the getChallengeForTimeSynch function is called when the
HSM is in the challenge_issued state.

setTime

inputs:
uint64 CurrentTime;
byte* SignedHash;
uint SignedHashLength;

outputs:
--

exceptions:
InvalidState;
InvalidSignature;

82

7 Crypto Support Module

This function is used in the time synchronization procedure to input the message of the
trusted time source into the HSM. More specifically, a 64-bit timestamp value and the
digital signature of the time source is input to the HSM. Recall that the digital signature
must be generated over the timestamp value and the challenge received from the HSM.
If the HSM is in the challenge_issued state, then it verifies the digital signature. If the
signature is valid then the internal clock is set, the HSM returns to the normal state,
and the challenge is removed from the memory.

An exception is thrown if the setTime function is called when the HSM is in the normal
state, or the verification of the digital signature fails.

getTime

inputs:
--

outputs:
uint64 CurrentTime;

exceptions:
--

This function can be used by the applications to read the value of the secure internal
clock of the HSM.

getRandom

inputs:
uint NumberOfBytes;

outputs:
byte* RandomBytes;
uint RandomBytesLength;

exceptions:
--

This function is used to generate random numbers for cryptographic purposes, for
instance, to be used as symmetric keys. This is needed when an application wants
to encrypt a message with the supported ECIES hybrid encryption scheme where the
message is first encrypted with a randomly generated bulk encryption key using a
symmetric key cipher and then the random key is encrypted with the public key of the
intended recipient. The random bulk encryption key should be generated by the HSM
using the getRandom function. The encryption itself is then performed by the calling
application, and once it is completed, the application must delete the random bulk
encryption key.

83

7 Crypto Support Module

initLongTermKeyUpdate

inputs:
uint KeyID;

outputs:
public_key* LongTermPublicKey;

exceptions:
InvalidKeyID;
NotEnoughMemory;

This function can be used to generate new long-term key pairs (long-term signature
generation/verification or encryption/decryption key pairs). This is used when the cer-
tificate of the long-term key pair with keyID KeyID is nearly expired. The function only
generates and temporarily stores the new private key and not removes the old key.
The newly generated key cannot be used to sign or decrypt any message after this
call. The function outputs the new public key, and sets the under_update flag of the
key to true. If the function is called many times for the same keyID without calling
finalizeLongTermKeyUpdate, only the last generated key is stored. The function out-
puts the newly generated public key.

An exception is thrown if there is not enough memory to store the new key, or the key
is a short-term or root key, which cannot be updated with this function.

finalizeLongTermKeyUpdate

inputs:
uint KeyID
uint64 Timestamp;
byte* SignedHash;
uint SignedHashLength;

outputs:
--

exceptions:
InvalidSignature;
InvalidTimestamp;
NotUnderUpdate;

This function can be used to remove an old long-term key, and start to use the new key
generated by the last call of initLongTermKeyUpdate with KeyID. This exchange of the
keys is only comitted if it is authenticated by one of the stored long term root keys and
is not too old. The input of the function is the keyID of the key to be updated, a times-
tamp and signed hash value of the string ”UPDATE LONG TERM KEYS”, the device
identifier, the public key to be used, and the timestamp. After the successful execution

84

7 Crypto Support Module

of the function, the new key can be used with the old keyID (the long-term signature
generation key’s ID is 0x0003, and the long-term decryption key’s ID is 0x0004).

If the signature is not valid or the timestamp is too old, then an exception is thrown. If
initLongTermKeyUpdates is not called yet, then an exception is thrown as well.

initDevice

inputs:
byte[16] DeviceID;
public_key[2] RootKeys;
uint64 CurrentTime;
byte* DeviceParameters;
uint DeviceParametersLength;

outputs:
public_key* LongTermPublicKeys;
uint LongTermPublicKeysCount;

exceptions:
AlreadyInitialized;
UnknownAlgorithmID;
InvalidPublicKeyValue;
InvalidDeviceParameters;

This function is used to initialize the HSM. Initialization must happen only once. For this
reason, after manufacturing, the HSM is in not_initialized state, and upon success-
ful completion of the initDevice function, it changes its state to initialized, where
calling the initDevice function again results in throwing an exception. Furthermore,
initialization must happen in a secure environment where it is not expected that the
communication between the HSM and the authority that performs the initialization can
be attacked (modified or delayed).

The inputs of the initDevice function consist of a 128-bit globally unique device iden-
tifier, two long-term root public keys that are used to authenticate the commands is-
sued by the authorities to the HSM, a 64-bit time value representing the current time,
and a set of further device parameters including the threshold value used in the time
synchronization procedure described earlier. Upon successful completion, the HSM
installs the root public keys in its internal key data base and assigns the key identifiers
0x0001 and 0x0002 to them, sets its internal clock to the received time value, stores the
device identifier and the device parameters, and changes its state to initialized.

Immediately after initialization, the HSM generates its long-term key pairs and outputs
the public keys in an array of public_key data structures. These public keys can then
be certified by the appropriate authorities. The HSM does not store certificates; this is
the responsibility of the applications running on the OBU.

85

7 Crypto Support Module

As we said before, an exception is thrown if the initDevice function is called in
the initialized state. In addition, an exception is thrown if any of the supplied
public_key data structures contains an unknown algorithm identifier or an erroneous
public key value that cannot correspond to the given algorithm, or the supplied device
parameters are invalid.

revokeRootKey

inputs:
uint KeyID;
uint64 Timestamp;
byte* SignedHash;
uint SignedHashLength;

outputs:
--

exceptions:
InvalidState;
InvalidKeyID;
InvalidTimestamp;
InvalidSignature;

This function allows for the revocation of a long-term root public key. For this reason
the caller must specify the key identifier (0x0001 or 0x0002) of the key to be revoked.
In addition, the signature of the authority trusted for such a revocation together with a
timestamp value must be supplied. The signature must be generated by the trusted
authority with the private key that corresponds to the root public key to be revoked over
the string ”REVOKE ROOT PUBLIC KEY”, the public key value, and the timestamp.

The HSM starts processing this call only if it has two valid root public keys, or in other
words, if it is in the two_root_keys state. Otherwise, an exception is thrown. The HSM
verifies the signature (with the root public key to be revoked) and the timestamp. If the
signature is invalid or the timestamp is too old, then an exception is thrown.

Upon successful completion, the HSM deletes the specified root public key and changes
its state to one_root_key. In this state, the HSM does not accept any more revocation
commands.

setRootKey

inputs:
public_key RootKey;
uint64 Timestamp;
byte* SingedHash;
uint SignedHashLength;

86

7 Crypto Support Module

outputs:
--

exceptions:
InvalidState;
InvalidTimestamp;
InvalidSignature;
UnknownAlgorithmID;
InvalidPublicKeyValue;

This function can be used to load a new root public key into the HSM given that it has
a single valid root public key (i.e., it is in the one_root_key state). The caller must
input the new root public key, a timestamp, and the signature of the authority that is
computed with the private key that corresponds to the still valid root public key of the
HSM over the string ”LOAD ROOT PUBLIC KEY”, the public key to be loaded, and the
timestamp value.

The HSM starts processing this call only if it is in the one_root_key state, otherwise
an exception is thrown. The HSM verifies the signature and the timestamp. If the
signature is invalid or the timestamp is too old, then an exception is thrown.

Upon successful completion, the HSM installs the specified root public key and changes
its state to two_root_key. In this state, the HSM does not accept any more load com-
mands.

killDevice

inputs:
uint64 Timestamp;
byte* SingedHash;
uint SignedHashLength;

outputs:
--

exceptions:
InvalidTimestamp;
InvalidSignature;

This call is used to revoke the entire HSM. A need for such a revocation may arise if
any of the long-term master private keys of the HSM is suspected to be compromised.
The caller must input a timestamp and a digital signature computed by the authority
with the private key that corresponds to one of the valid root public keys of the HSM
over the string ”KILL DEVICE”, the device identifier of the HSM, and the timestamp.
The HSM verifies the signature and the timestamp. If the signature is invalid or the
timestamp is too old, then an exception is thrown. Otherwise, the HSM kills itself,
meaning that it will not accept any more calls through its API.

87

7 Crypto Support Module

Bundle description Algorithm identifier
ECDSA with SHA-1 and elliptic curve domain parameters 0x0001
specified in [Cer00] under the name secp112r1
ECDSA with SHA-1 and elliptic curve domain parameters 0x0002
specified in [Cer00] under the name secp112r2
ECDSA with SHA-1 and elliptic curve domain parameters 0x0003
specified in [Cer00] under the name secp160k1
ECDSA with SHA-1 and elliptic curve domain parameters 0x0004
specified in [Cer00] under the name secp160r1
ECDSA with SHA-1 and elliptic curve domain parameters 0x0005
specified in [Cer00] under the name secp160r2
ECDSA with SHA-1 and elliptic curve domain parameters 0x0006
specified in [Cer00] under the name secp256k1
ECDSA with SHA-1 and elliptic curve domain parameters 0x0007
specified in [Cer00] under the name secp256r1

Table 7.2: Description and identifier of the signature algorithm and parameter bundles
supported in this version of the HSM API specification.

88

7 Crypto Support Module

Bundle description Algorithm identifier
ECIES with key derivation function ANSI-X9.63-KDF with SHA-1, 0x0011
MAC scheme HMAC-SHA1-80 (160-bit key), symmetric-key encryption
scheme AES-CBC (128-bit key), standard elliptic curve DH primitive,
and elliptic curve domain parameters specified in [Cer00]
under the name secp112r1
ECIES with key derivation function ANSI-X9.63-KDF with SHA-1, 0x0012
MAC scheme HMAC-SHA1-80 (160-bit key), symmetric-key encryption
scheme AES-CBC (128-bit key), standard elliptic curve DH primitive,
and elliptic curve domain parameters specified in [Cer00]
under the name secp112r2
ECIES with key derivation function ANSI-X9.63-KDF with SHA-1, 0x0013
MAC scheme HMAC-SHA1-160 (160-bit key), symmetric-key encryption
scheme AES-CBC (128-bit key), standard elliptic curve DH primitive,
and elliptic curve domain parameters specified in [Cer00]
under the name secp160k1
ECIES with key derivation function ANSI-X9.63-KDF with SHA-1, 0x0014
MAC scheme HMAC-SHA1-160 (160-bit key), symmetric-key encryption
scheme AES-CBC (128-bit key), standard elliptic curve DH primitive,
and elliptic curve domain parameters specified in [Cer00]
under the name secp160r1
ECIES with key derivation function ANSI-X9.63-KDF with SHA-1, 0x0015
MAC scheme HMAC-SHA1-160 (160-bit key), symmetric-key encryption
scheme AES-CBC (128-bit key), standard elliptic curve DH primitive,
and elliptic curve domain parameters specified in [Cer00]
under the name secp160r2
ECIES with key derivation function ANSI-X9.63-KDF with SHA-1, 0x0016
MAC scheme HMAC-SHA1-160 (160-bit key), symmetric-key encryption
scheme AES-CBC (128-bit key), standard elliptic curve DH primitive,
and elliptic curve domain parameters specified in [Cer00]
under the name secp256k1
ECIES with key derivation function ANSI-X9.63-KDF with SHA-1, 0x0017
MAC scheme HMAC-SHA1-160 (160-bit key), symmetric-key encryption
scheme AES-CBC (128-bit key), standard elliptic curve DH primitive,
and elliptic curve domain parameters specified in [Cer00]
under the name secp256r1

Table 7.3: Description and identifier of the encryption algorithm and parameter bundles
supported in this version of the HSM API specification.

89

8 Bibliography

[Cer00] Certicom Research. SEC 2: Recommended elliptic curve domain pa-
rameters. Standards for Efficient Cryptography (SEC), version 1.0,
September 2000.

[CPHL07] Giorgio Calandriello, Panos Papadimitratos, Jean-Pierre Hubaux, and
Antonio Lioy. Efficient and robust pseudonymous authentication in vanet.
In VANET ’07, pages 19–28, New York, NY, USA, September 2007.
ACM.

[DC85] David Chaum. Security Without Identification: Transaction Systems to
Make Big Brother Obsolete. Commun. ACM, 28(10):1030–1044, 1985.

[FD05] Florian Dötzer. Privacy Issues in Vehicular Ad Hoc Networks. In Work-
shop on Privacy Enhancing Technologies, Cavtat, Croatia, May 2005.

[KSW06] Frank Kargl, Stefan Schlott, and Michael Weber. Identification in ad hoc
networks. In Hawaiian International Conference on System Sciences,
HICSS 39, Hawaii, USA, January 2006.

[MRJPH05] Maxim Raya and Jean-Pierre Hubaux. The security of vehicular ad hoc
networks. In SASN ’05: Proceedings of the 3rd ACM workshop on Se-
curity of ad hoc and sensor networks, pages 11–21, New York, NY, USA,
2005. ACM Press.

[PBH+07] P. Papadimitratos, L. Buttyan, J-P. Hubaux, F. Kargl, A. Kung, and
M. Raya. Architecture for secure and private vehicular communications.
In ITST’07, Sophia Antipolis, France, 2007.

[PMH08] P. Papadimitratos, G. Mezzour, and J.-P. Hubaux. Certificate revocation
list distribution in vehicular communication systems. In ACM VANET
2008, San Francisco, CA, September 2008. (to appear).

[RCCKL06] C. Robinson, L. Caminit, D. Caveney, and Ken Laberteaux. Efficient Co-
ordindation and Transmission of Data for Cooperative Vehicular Safety
Applications. In VANET 2006, September 2006.

[RPJP06] M. Raya, P. Papadimitratos, and Hubaux J.-P. Securing vehicular com-
munications. IEEE Wireless Communications Magazine, Special Issue
on Inter-Vehicular Communications, October 2006.

90

8 Bibliography

[SKS+06] Elmar Schoch, Frank Kargl, Stefan Schlott, Tim Leinmüller, and Panos
Papadimitratos. Impact of pseudonym changes on geographic routing
in vanets. In Third European Workshop on Security and Privacy in Ad
hoc and Sensor Networks, ESAS 2006, volume 4357 of Lecture Notes
in Computer Science, Hamburg, Germany, September 2006.

[YCHKPL06] Yih-Chun Hu and Kenneth P. Laberteaux. Strong VANET Security on a
Budget. In escar 2006, November 2006.

91

