
VANET Simulations with JiST/ SWANS

SEVECOM Kick-off Workshop

 Elmar Schoch • elmar.schoch@uni-ulm.de

SEVECOM Kick-off Workshop • Elmar Schoch 2

Cornell University

Overview

JiST
Java in Simulation Time

- Discrete event simulation
 engine in Java

DUCKS
- Framework for automated

 simulation execution and
 evaluation

SWANS

Scalable Wireless Ad Hoc

Network Simulator
- Library for MANET simulations

STRAW
- Street Mobility Model

VANS extensions

- Geographic routing

setup,
control,

evaluateuse

UULM

North Western University

SEVECOM Kick-off Workshop • Elmar Schoch 3

JiST – Simulation Kernel

• Basic idea: Convert virtual machine into simulation
platform

– Introduce virtual time

– Make use of modern language concepts

• Base: Java and JVM

– All components are pure Java
(Rewriter, simulation kernel, library, simulation setup, …)

– Reuse Java: reflection, interfaces, libraries, …

• Kernel

– Strict partitioning of a simulation into entities

– Method invocations on objects marked
as entities represent simulation events

– No explicit event queue, but
virtual, explicit time progress

Entity

Object

SEVECOM Kick-off Workshop • Elmar Schoch 4

JiST – System architecture

• Java source files are compiled with regular
Java compiler

• Running JiST invokes Rewriter

– Rewriter modifies Java bytecode to introduce
simulation time semantics

• JiST invokes simulation program

– Rewritten program interacts with simu kernel

– Virtual time progress independent of program

progress (instructions take zero virtual time)

– Time is advanced explicitly via
JistAPI.sleep()

– Time synchronization between Entities

on method invocation

(each Entity runs at own simulation time)

• Classes may be used without underlying JiST
Kernel

Java source code

javac

Java bytecode

Rewriter

Modified classes

JVM + kernel

SEVECOM Kick-off Workshop • Elmar Schoch 5

JiST example

import jist.runtime.JistAPI;

class Hello implements JistAPI.Entity {

 public static void main(String[] args) {

 System.out.println(“Simulation start“);

 Hello h = new Hello();

 h.doSequence(3);

 }

 public void doSequence(int count) {

 while(count > 0) {

 JistAPI.sleep(1);

 System.out.println(“Hello t=“+JistAPI.getTime());

 count--;

 }

 }

}

java jist.runtime.Main Hello

> Simulation start

> Hello t=1

> Hello t=2

> Hello t=3

SEVECOM Kick-off Workshop • Elmar Schoch 6

JiST – Performance

• Event troughput

– ~ three times faster than ns2-C

– ns2-Tcl shows extreme
performance degradation

– JiST shows kink in the first
simulation second due to
JIT compiler

• Memory footprint

Source: JiST User Guide

SEVECOM Kick-off Workshop • Elmar Schoch 7

SWANS

• Library for MANET simulations

• SWANS is an application of JiST

• Special properties:

– Promises to handle huge node numbers with
reasonable time/memory requirements
Example: Neighbor Discovery Protocol, 15 minutes

– Efficient signal propagation by hierarchical binning

– Allows running standard Java network apps
over simulated networks

Source: http://jist.ece.cornell.edu/docs/031112-ece2.pdf

SEVECOM Kick-off Workshop • Elmar Schoch 8

Network

SWANS overview

Field

Radio

MAC/LL

Message
Queue

Routing

Transport

Application

Mobility

Random waypoint/walk,
Static, Teleport

CBR, heartbeat, legacy
Java networking

UDP, TCP

Zero, Rayleigh or Rician fading,

Free-space or Two-Ray path-loss

IPv4

AODV,

DSR,

ZRP

IEEE 802.11b, Naive MAC

Indep. & additive noise

SEVECOM Kick-off Workshop • Elmar Schoch 9

VANET simulations

• Node mobility model

– Vehicle movements

• High velocities

• Quasi one-dimensional movements on highways

• Short encounters of oncoming traffic

– Vehicle Behavior

• Radio/Medium Access

– Decentralized medium access, bandwidth allocation

– Realistic radio propagation in urban environments

• Routing

– Position-based routing particularly suitable

• Applications

– Extreme variety of application ideas

– Other C2C projects?

Currently implemented

by UULM

STRAW

SEVECOM Kick-off Workshop • Elmar Schoch 10

STRAW Mobility Model

• By Northwestern University, Aqualab
– http://www.aqualab.cs.northwestern.edu/projects/STRAW/index.php

• Written for JiST/SWANS

• Models vehicular node movements on streets

– Structures: segments, ramps, intersections

– Movements: acceleration, deceleration, …

• Uses TIGER® street maps

– By U.S. Census Bureau

SEVECOM Kick-off Workshop • Elmar Schoch 11

DUCKS simulation framework

• Problem:

– JiST/SWANS lacks tools for handling simulation
parameters and output

• Solutions by DUCKS:

– Easily define complete simulation
scenarios by config files (e.g. various simulation setup
parameters like field size, node number, ...)

– Automated execution of simulations

– Easy distribution of simulation on multiple servers

– Structured statistics collection,
storage and evaluation

• Implementation nearly finished
(still fixing some issues and extending usability)

SEVECOM Kick-off Workshop • Elmar Schoch 12

Store

results on

relational

database

DUCKS architecture

Simulation

Generator

Simulation

server(s)

Database

server

Simulation
config

Generator
config

Without faking
With 10% fakers

Defines complete

simulation scenario

Demultiplexes scenario

to single simulations

Distributes jobs to

simulation servers

GUI allows to

visually create

graphs

Distributed simulation

computation on regular

JiST-servers

1

2

3

4

5

6

7

Collect results

SEVECOM Kick-off Workshop • Elmar Schoch 13

DUCKS config file example

ducks.config.runs=20

ducks.general.fieldsize.x=500,1000

ducks.general.fieldsize.y=(ducks.general.fieldsize.x <-> 500,1000)

ducks.general.nodes=50-200/50,500

ducks.general.duration=120

ducks.general.waittime.start=10

ducks.general.waittime.end=(-> ducks.general.waittime.start)

ducks.mobility.movement=waypoint

ducks.mobility.waypoint.speed.min=1

ducks.mobility.waypoint.speed.max=5,20

ducks.mobility.waypoint.pausetime=(ducks.mobility.waypoint.speed.max == 5 ? 0 : 10)

ducks.mobility.waypoint.precision=100

ducks.traffic.type=cbr

ducks.traffic.cbr.rate=20

ducks.traffic.cbr.packetspercon=1

ducks.traffic.cbr.waittime=0

ducks.routing.protocol=aodv

ducks.mac.protocol=802.11

SEVECOM Kick-off Workshop • Elmar Schoch 14

JiST/SWANS Pros & Cons

• Fast & scalable

• Completely Java-based
approach

– Advantages of Java

(Garbage collection, type-
safety, reflection, library, …)

– No other language needed

– Portability of JVM

• Interesting virtual time concept

• Usage of legacy, socket-based
Java applications is possible

• Maturity unproven

– Still little attention in research
community

– Correctness of implementation

– Minor bugs/deficiencies

– Issues regarding platform

independence

• Sparse tool support

– No GUI modeling/output

– No framework for automated

simulation execution

• leveraged by DUCKS

Pros Cons

SEVECOM Kick-off Workshop • Elmar Schoch 15

Further work

• Ongoing activities
– Implementation of geographic routing

– Implementation of positioning and position verification

– DUCKS consolidation

– Performance tests

• Planned activities
– More realistic signal propagation models

e.g. including obstacles like buildings

– Abstraction layer to be able to switch between
simulator and real hardware

• Scientific plans
– Qualitative comparison of SWANS and ns-2

(e.g. regarding delivery ratio, delay, …)

– Use for SEVECOM protocol validation

SEVECOM Kick-off Workshop • Elmar Schoch 16

