

Security and Geographic Routing

Tim Leinmüller

SEVECOM Kickoff Meeting, Lausanne February 2, 2006

Overview

Motivation

- Geographical Addressing
- Geographical Forwarding

Position Based Routing

- Greedy Routing
- Greedy Versus Topology Based Routing

Security of Position Based Routing

- Attacks
- Position Information

Summary

Geographical Addressing

Geo-Broadcast

- Distribute a data packet to all vehicles inside the destination area
- Example: traffic jam warning

Geo-Anycast

- Send a data packet to an arbitrary vehicle inside the target area
- Example: request to another vehicle, if the traffic jam has already been resolved

Geo-Unicast

- To send a data packet in unicast mode to an addressed other vehicle. The position information is used to optimize efficiency of the ad hoc network
- Example: virtual caravan driving

Geographical Forwarding: Line Forwarding, Area Forwarding

Example: Emergency Vehicle

- Line forwarding: transfer data packet to target area
- Area forwarding: distribute data packet inside target area

Position Based Routing: Greedy (Perimeter State) Routing, GPSR

- Beacons: send ID and position to neighbors \rightarrow neighbor table
- Greedy routing: transmit packet to neighbor closest to the addressed position

• Problems:

- Alternative routes: in case no node closer to destination is found *Solution: Physical data transport of packets (caching)*
- Look-up service: find position of a destination addresses Solution: Ring Flooding

5

Route:

 $A \rightarrow C \rightarrow D \rightarrow E$

Simulation Results: Greedy versus Topology Based Routing

Maximum communication range (1 hop): 250 m

D. Vollmer (DC), M. Mauve (Uni Düsseldorf), H. Füssler, Käsemann (Uni Mannheim), H. Hartenstein (Uni Larlsruhe)

Security of Position Based Routing

Attacking position based routing means to attack the beaconing mechanism

• (Beacons: send ID and position to neighbors)

Attacks

- Node identifiers
 - Create (additional) node identifiers
 - Sybil Attack
 - Impersonate other nodes
 - Discredit other nodes
- Position information
 - Modify / falsify position information in beacons
 - Reroute data
 - Intercept data

Position Faking Malicious Node

- Malicious nodes use properties of the communication system to decrease network performance
- Example: Fake position of own car
 - Correct path from vehicle A to vehicle E: A->C->D->E
 - B broadcasts wrong position
 - Modified path: A->B->C->D->E
 - B will attract traffic and can disrupt forwarding chain
 - Network performance will be decreased

Simulation Results: Impact of Wrong Positions

Roadside Attacker

- Roadside Attacker pretends to be part of the network and use properties of the communication system to decrease network performance
- Example: Create attacker creates two fake nodes
 - Correct path between vehicle A and vehicle D: A->B->C->D, D->C->B->A
 - Attacker broadcasts positions for two fake identities
 - Modified paths: A->F2>C->D, D->C->F1->A
 - Attacker will attract traffic in both directions in this area

Summary

Origin of false position data

- "Defective" nodes (receiving or misinterpreting position data)
- Malicious nodes

Position based routing is vulnerable to attacks on beacon information

- Identifier
- Position Information

Effects

- Performance degradation
 - Formation of routing loops: loops are detected, packets dropped
 - No suitable next hop: packets cannot be routed, remain in cache
 - Packets maliciously dropped: position faking nodes drop intercepted packets
- Impact on safety related applications