Secure Vehicle Communication

Discussion on Identity Management

Panos Papadimitratos EPFL

- Vehicular communications system participants
 - Users
 - Network nodes
 - Authorities
- Users: individuals that operate vehicles
 - Focus on network operation and device communication

System view (cont'd)

- Network nodes
 - Infrastructure
 - Roadside units
 - Static, quasi-static
 - Mobile infrastructure
 - Public safety vehicles
 - Police, road assistance, firefighters, ambulances
 - Buses
 - Non-infrastructure vehicles
- Servers at the wire-line part of the network

"Physical" world identity

- Drivers and vehicles already identified in multiple ways
 - Drivers
 - Name
 - License number, mailing address, date of birth
 - **...**
 - Vehicles
 - Vehicle identification number
 - Registration number
 - Type of the vehicle
 - **...**

Question 1

- What is the relation between the "physical" and the "VeCom" world identities?
 - Integration
 - Extension
 - Tranquility/preservation
 - Basic design principle or de facto requirement?

"VeCom" identity

- "Physical world" set of identity attributes
- Network identifiers
 - At different layers of the protocol stack
- Service identifiers/credentials
- Cryptographic keys and credentials

Question 2

- What are the required system properties?
 - Liability
 - Accountability
 - Privacy
 - Contradictory requirements and objectives
- How well are these requirements understood and defined in the context of vehicular communication systems?

- Information hiding Privacy
 - VeCom system operation does not disclose or allow inferences on the personal and private information of the users
- What distinguishes VeCom when it comes to transactional communication?
 - E.g., service access
 - Privacy ? confidentiality

- Is anonymity a requirement in the vehicular networking context?
- Actions (e.g., messages) of nodes remain
 anonymous with respect to a set of observers
 - In other words, the identity of the node taking an action remains hidden from the observers

- At minimum: observer unable to learn if an action is taken by node *A*, but:
- Observer may be able to guess that node A is more likely to have acted than node B
- Stronger notion of anonymity?

Impact on the system design

Hypothesis

- Infrastructure nodes: No anonymity; instead, rich description of identity and attributes
- Non-infrastructure nodes: Anonymity

Facts

- Managed identities
- Security services (e.g., access control, entity and data authentication)
- Liability

Impact on the system design (cont'd)

- Example: Instantiation of authorities
 - New operational assumptions
 - Fine-grained location-dependent deployment and operation
 - Delegation
 - Interaction with nodes
 - Registration, node bootstrapping
 - Renewal and revocation of credentials
 - Separation of privilege
 - Issuance of anonymous credentials
 - Linking of traffic/data to vehicle

Conclusions

- Definition of basic assumptions and requirements
- Incremental integration of (functionality for)
 additional requirements, as agreed upon and as
 on-board computers can support them
- Identity management assumptions and requirements can strongly influence the architecture of evolving vehicular communication systems

