

Secure Vehicular Communications – An Architectural View

Panos Papadimitratos EPFL panos.papadimitratos@epfl.ch

Problem

- Vehicular Communications (VC) / Vehicular Ad Hoc Networks (VANET)
 - Technology in the making
 - Wide (eventually) yet gradual deployment
 - Interoperability
 - Standardization
 - Security and Privacy
 - Basic requirements/prerequisites
 - No retrofitting

Security and Privacy - Why?

- Without robust designs, VC systems may facilitate antisocial behavior
- The deployment of vulnerable VC systems may cancel out their envisioned benefits
- Abused, poorly defended VC systems can cause damages and high cost
- Attackers and adversaries will always be present

Attacking the VC system (cont'd) SEVECOM

- Point of caution
 - Not all requirements listed here are relevant to all applications and scenarios

- (1) Message Authentication and Integrity
 - Messages must be protected from any alteration and the receiver of a message must corroborate the sender of the message

Requirements (cont'd)

- (2) Entity authentication
 - The receiver is ensured that the sender generated a message recently
- (3) Message Non-Repudiation
 - The sender of a message cannot deny having sent a message
- (4) Access control
 - Distinct roles for different types of network entities
 - Regulate access to information/services
 - Authorization: Establish what each network entity is allowed to do (e.g., protocols to run, messages to send)

Requirements (cont'd)

- (6) Message Confidentiality
 - The content of a message is kept secret from those nodes that are not authorized to access it
- (7) Privacy Anonymity
 - *VC* systems should not disclose or allow inferences on the personal and private information of the users
 - At *minimum*, an observer can*not* learn if a node performed, or will perform in the future, a specific action, assuming that the node performs the action

Requirements (cont'd)

- (8) Availability
 - Protocols and services should remain operational even in the presence of faults, malicious or benign
 - Secure and fault-tolerant designs
 - Resilience to resource depletion attacks
 - Self-stable protocols
- (9) Liability
 - Users of vehicles are liable for their deliberate or accidental actions that disrupt the operation of other nodes, or the transportation system
 - The VC system should provide information that assists the attribution of liability
 - Auditing

Smart vehicle

Node V

- Unique identity
- Public / private key pair
 - *K*_V, *k*_V
- Certificate
 - $Cert_X\{K_V, A_V\}$
- Central processing and communication module
- Additionally (optionally)
 - Set of additional credentials/certificates and cryptographic keys

- Trusted components
 - Tamper-resistant
 - Storage
 - Cryptographic material
 - Data
 - Processing
 - Cryptographic operations
 - Motivation
 - Current state; Event Data Recorders (EDRs)
 - Bind physically cryptographic material to the vehicle

- Public (e.g., emergency, police, buses) vehicles
- Infrastructure (road side units)
- Assigned special roles and attributes
 - Relatively more trustworthy
 - Facilitate security-related operations

Authorities

- Trusted entities issuing and managing identities and credentials for all VC system entities
- Multiple and distinct
- S_X set of VC system entities registered with an authority X

Also known as:

- Certification Authorities (CAs)
- (Vehicular) Public Key Infrastructure

 Vehicle-to-vehicle (V2V) and Vehicle-to-Infrastructure (V2I) secure communication

- Other aspects
 - In-car security
 - User identification
 - User-vehicle association
 - Resilience to false measurements/data
 - Resilience to resource-depletion Denial of Service (DoS) attacks

5-sept.-06

Overall System View

- Security and privacy-enhancing mechanisms
 for vehicular communication systems are a
 prerequisite for their deployment
- Securing VC systems is a complex problem
- On the positive side
 - Real problem
 - Constrained problem space
- Opportunity
 - Awareness
 - Joint efforts in industry and academia
 - Standardization

http://ivc.epfl.ch

http://www.sevecom.org

