Secure Vehicle Communication

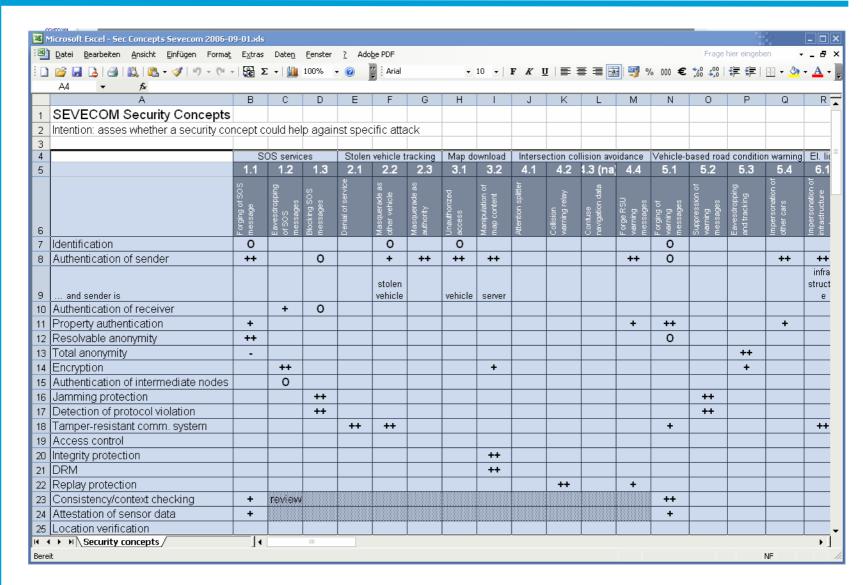
Proposal for a SEVECOM SW Architecture

Frank Kargl frank.kargl@uni-ulm.de

Media Informatics Dep. Ulm University

Budapest Meeting, 4./5. Sept. 2006

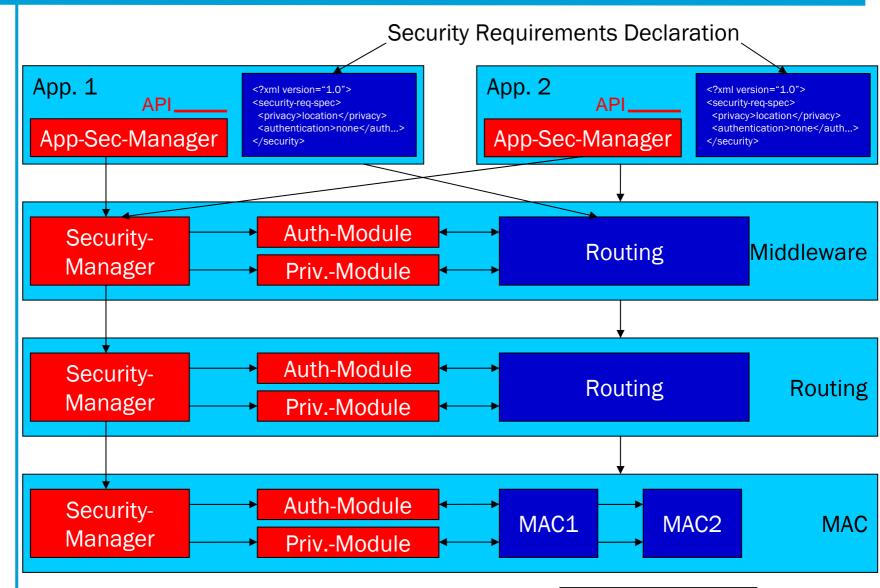
The Problem



- SEVECOM Requirements Engineering discovered that (at least) the following security modules are needed:
 - Identification
 - Authentication of sender
 - Authentication of receiver
 - Authentication of intermediate nodes
 - Property authentication
 - Resolvable anonymity
 - Total anonymity
 - Encryption
 - Jamming protection
 - Tamper-resistant comm. system
 - Access control
 - Integrity protection
 - DRM
 - Replay protection
 - Detection of protocol violation
 - Consistency/context checking
 - Attestation of sensor data
 - Location verification
 - ...

Not all modules are active all the time

Problems



- Some modules influence each other
 - E.g. Authentication vs. Anonymity
- Modules are located on different layers
 - E.g. Anonymity requires changed IDs on MAC-, IP-, application-layer
- Will the security system needs to be changed, when new applications are installed?
 - → Solution: Security architecture which is
 - Modular
 - Flexible
 - Dynamically configurable at runtime

SW Architecture Proposal

Security Requirements Specification

Syntax could be

- XML-based
- Resource Description Framework / RDF
 - Similar e.g. to CC/PP

Example

```
<?xml version="1 0"?>
<rdf:RDF xmlns:rdf="..." xmlns:sv="http://www.sevecom.org/schema#">
 <rdf:Description rdf:about="http://www.c2c-cc.org/vehicle-based_road_cond_warning">
 <rdf:type rdf:resource="esafetyApplication"/>
  <sv:requires>
  <sv:SecurityRequirement module="PropertyAuthentication">
   <sv:nodeType>Vehicle</sv:nodeType>
  </sv:SecurityRequirement>
  </requires>
  <requires>
  <sv:SecurityRequirement module="Privacy">
   <sv:idPrivacy changeInterval="5s"/>
  </sv:SecurityRequirement>
  </sv:requires>
 </rdf:Description>
</rdf:RDF>
```


Priorities

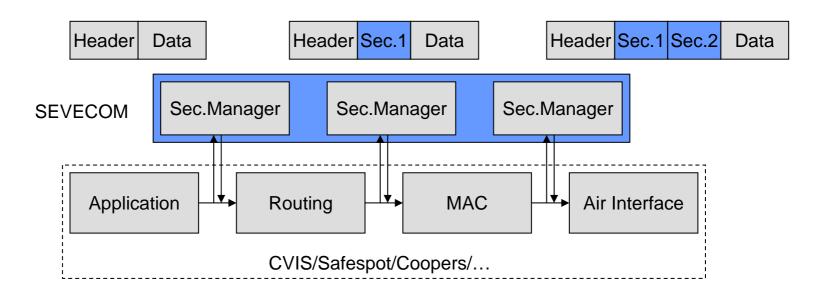
- If two applications have contradicting requirements?
 - Ruleset determines which requirement takes priority

```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="..." xmlns:sv="http://www.sevecom.org/schema#">
<rdf:Description rdf:about="http://www.c2c-cc.org/defaultPriorities">
<rdf:type rdf:resource="PriorityRules"/>
<sv:priority rdf:resource="eSafetyApplication" priority="10" />
<sv:priority rdf:resource="maintenanceApplication" priority="4" />
<sv:priority rdf:resource="entertainementApplication" priority="1" />
</rdf:RDF>
```

- Applications can be informed via callbacks, if their security requirements are not met and then decide to proceed or stop operation
- Rulesets may also adapt security mechanisms to national regulations, personal preferences, etc.

Application Callbacks

- Security modules can inform applications
 - about results of security operations
 - e.g. transmit user ID after authentication
 - about problems with security operations
 - e.g. when privacy requirements can not be met, because of contradicting requirements in other applications


```
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="..." xmlns:sv="http://www.sevecom.org/schema#">
 <rdf:Description rdf:about="http://www.c2c-cc.org/vehicle-based_road_cond_warning">
 <rdf:type rdf:resource="esafetyApplication"/>
  <sv:requires>
   <sv:SecurityRequirement module="IdentityAuthentication">
   <sv:InformApplication method="org.sevecom.VehBasRoadCondWarning.authenticated"/>
   </sv:SecurityRequirement>
</sv:requires>
 </rdf:Description>
</rdf:RDF>
package org.sevecom;
public class VehBasRoadCondWarning {
  public void authenticated(Credentials identity) { ... }
```


Packet Capture and Modification

- How to combine security modules and other functionality?
 - Communication infrastructure allows registration of callbacks at specified hooks, security modules can analyze, modify, and even drop packets at defined hooks
 - Security headers can be attached
 - Similar to Linux netfilter architecture

Open Questions

- Can such a mechanism be integrated into the selected architecture?
- Properties of this architecture?
 - Implemented in Java, C, ... ?
 - Access to communication infrastructure
 - Reflection mechanism
 -