

- Drivers and vehicles already identified in multiple ways
 - Drivers
 - Name
 - License number
 - Mailing address
 - Date of birth
 - Vehicles
 - Vehicle identification number (VIN)
 - Registration number
 - Technical information
 - Туре
 - Model
 - Color

Vehicular Communication Systems **SEIVECOM**

- System participants
 - Users
 - Network nodes
 - Authorities
- Binding users to vehicles is an important issue
 - Many-to-many relationship
- Focus on network operation and device communication

Vehicular Communication Systems SEVECOM

- Relation between "physical" and VC identities
 - Integration Adaptation
 - Extension
- Vehicular communications identity
 - "Physical world" attributes
 - Network identifiers
 - At different layers of the protocol stack
 - Service identifiers/credentials
 - Cryptographic keys and credentials

- Infrastructure and Public Vehicles
 - No anonymity or privacy enhancement mechanisms
 - Rich description of node attributes
 - Authentication

- Private vehicles
 - Privacy enhancing technologies are necessary
 - Authentication

- Safety alerts / messages
 - Periodic, triggered, frequent

- Full anonymity
 - For an observer, an action could have been performed by any other entity in the system
- In our context, 'system' is S_X , the set of nodes registered with an Authority X
- Example
 - For each and every safety-related message a vehicle V sends, an observer that collects all messages can only guess with probability 1/|S_X| that V was the sender for each of them

- Authority X
 - Provides Cert_X{K_V, A_V}
 to the vehicle V
 - *K*_X

- Vehicle V
 - *K*_V, *k*_V

•
$$Cert_X\{K_V, A_V\}$$

- Authority A
 - Issues credentials for anonymous authentication
 - *K*_A

- Sign/show
 - The vehicle uses its secret and membership
- Verify

K-Anonymity

- Limitation of the anonymous system
 - A legitimate member of G_A can generate a large number of unlinkable messages
 - Impact depends on the application

- Solution
 - K-anonymity: K-times per time period anonymous authentication
 - A legitimate member can use its credentials only up to K times within a given time interval

- For private vehicles
 - Anonymity
 - K-Anonymity
- 'Classic' cryptography cannot provide these features
- New cryptographic primitives are necessary

