

IBM Zurich Research Laboratory

Privacy Enhancing Technologies

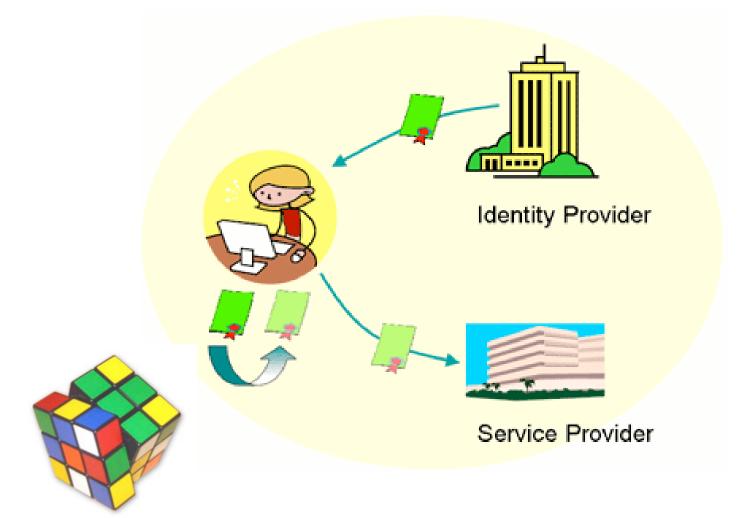
Dr. Susan Hohenberger (IBM) Dr. Panos Papadimitratos(EPFL)

What are some Privacy Enhancing Technologies?

Anonymous Credentials

- Electronic Passports and Driver's Licenses
- Can prove over 21 and *nothing* else
- IDEMIX: http://www.zurich.ibm.com/security/idemix

Anonymous e-Cash


- Toll booths, Train tickets
- Can get privacy of cash and speed of Metro Pass

k-Anonymous Authentication per Time Period

- Car-to-Car, Car-to-Infrastructure Communication
- Can gather safety data without tracking users
- and more

Anonymous Credentials

IDEMIX - Identity Mixer

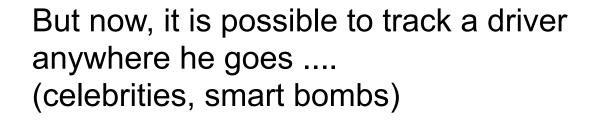
- IBM proof-of-concept implementation
- Computer-to-computer setting
- Anonymous authentication takes a few seconds
- Plans to open source the code, join with Higgins
- http://www.zurich.ibm.com/security/idemix

=	
<u> </u>	- ik á
	 1 5 1

Car-to-Car Communications

Cars should report to each other on the safety conditions of the road.

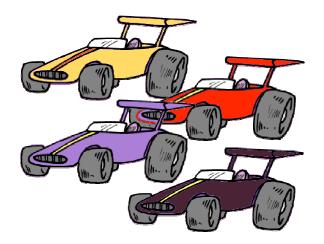
=	
_	- 11 d


Car-to-Car Communications

We must authenticate these reports, so that a bad party cannot get away with submitting false information.

_		- 1. J
	E	

Car-to-Car Communications



Car-to-Car Communications

IDEA: limit each car to k **anonymous** reports per time period.

Now, a rogue sensor cannot submit "too much" false information.

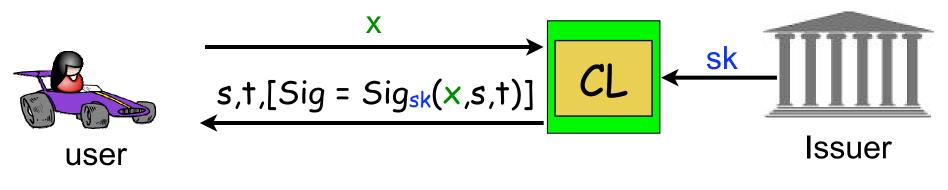
Honest users remain anonymous.

IDEA: If **k or less** reports per period, then reports are **anonymous** and **unlinkable**.

> If **more than k** reports per period, then reports are **identifiable** and **linkable**.

IDEA: If **k or less** reports per period, then reports are **anonymous** and **unlinkable**.

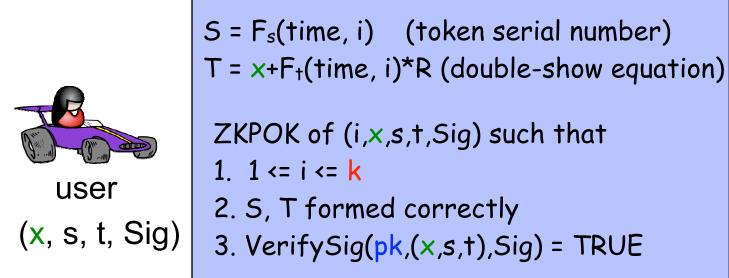
> If **more than k** reports per period, then reports are **identifiable** and **linkable**.



GLITCH PROTECTION: If **no more than m** extra reports per year, then reports are **anonymous**, but **linkable**.

SETUP: (pk,sk) Issuer signing key (secret) x for each user

OBTAIN DISPENSER:



Dispenser = (x, s, t, Sig). (for all tokens from now to eternity)

SHOW A TOKEN: Let $F_{()}()$ be a PRF Family.

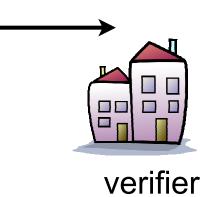
random R

verifier

Periodic k-times Anonymous Authentication

(x, s, t, Sig)

13


S = F_s(time, i) (token serial number)
T = x+F_t(time, i)*R (double-show equation)
ZKPOK of (i,x,s,t,Sig) such that
1. 1 <= i <= k
2. S, T formed correctly
3. VerifySig(pk,(x,s,t),Sig) = TRUE</pre>

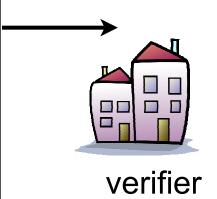
Why is this anonymous?

 $S = F_s(time, i)$ (token serial number) T = x+F_t(time, i)*R (double-show equation)

ZKPOK of (i,x,s,t,Sig) such that token is correctly formed.

Suppose a user shows k+1 tokens in a time period.

DETECT: then two tokens will have same serial number S.


IDENTIFY: given (S,T1,R1) and (S,T2,R2), compute * F_t(time, i) = (T1 - T2)/(R1-R2)

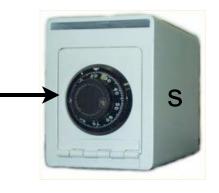
* x = T1 - F_t(time, i)*R1

 $S = F_s(time, i)$ (token serial number) T = x+F_t(time, i)*R (double-show equation)

ZKPOK of (i,x,s,t,Sig) such that token is correctly formed.

How efficient is it to Show and Verify a token?

Can optimize this construction so that: * User does 35 multi-base exps to Show * Verifier does 20 multi-base exps to Verify


(If k=1, reduces to 13 and 8 respectively.)

 $S = F_s(time, i)$ (token serial number)

Tracing of Misbehaving Users:

- 1. During Obtain, Issuer gets safe.
- 2. If user double-shows, x is revealed.
- 3. Use x to unlock safe and get s.
- 4. Use s to compute all serial numbers.

16

Χ

PRIME

IDEMIX Proof-of-Concept, Usage

- deployment and user feedback
- open source of code, join with Higgins
- http://www.zurich.ibm.com/security/idemix

Signatures: short and efficient

- RSA signatures: 2048 bits, but quick verification
- Bilinear signatures: 400 bits, but slower verification

What else??

lots of issues larger than cryptography

Susan Hohenberger

sus@zurich.ibm.com