
4-5 Sept 2006 Joint SeVeCom meeting, Budapest 1

Secure Vehicle Communication

API Attacks on
Tamper Resistant Modules

Levente Buttyan
BME / CrySyS Lab

buttyan@crysys.hu

Joint SeVeCom meeting, Budapest 24-5 Sept 2006

The need for tamper resistant modules

� implementing security services in vehicular networks requires
cars to store sensitive data
� cryptographic keys (secret keys, private keys), event logs, …

� sensitive data needs to be protected from unauthorized access

� cars operate in a “hostile” environment
� unsupervised access to all parts of a car by potential attackers
� incentives to compromise data

� attack detection in “real-time” is impossible
� tampering with cars may be detected by authorities at regular

inspections, but only months (or perhaps years) later

� attacks should be prevented
� needs tamper resistant hardware in cars

Joint SeVeCom meeting, Budapest 34-5 Sept 2006

Tamper resistant modules

� a tamper resistant module is a custom computer in
tamper resistant packaging
� hardware support for cryptographic functions
� tamper detection and reaction circuitry
� internal battery and clock
� …
� API

� the API of a tamper resistant module is a software
layer through which the module’s functions are
exposed to the external world

Joint SeVeCom meeting, Budapest 44-5 Sept 2006

An example API

� key_export
� inputs

� key token: EMK(K)
� key encryption key token: EMK(KEK)

� outputs
� exported key token: EKEK(K)

� key_import
� inputs

� external key token: EKEK(K)

� key encryption key token: EMK(KEK)

� outputs
� imported key token: EMK(K)

Joint SeVeCom meeting, Budapest 54-5 Sept 2006

An example API

� key_part_import
� inputs

� key part: K’
� key token: EMK(K)

� outputs
� updated key token: EMK(K+K’)

� encrypt
� inputs

� key token: EMK(K)
� data: X

� outputs
� encrypted data: EK(X)

� …

Joint SeVeCom meeting, Budapest 64-5 Sept 2006

Attacks on tamper resistant modules

API
(logical)
attacks

physical attacks and
implementation bugs

cryptanalysis

examples
- timing analysis
- power analysis
- fault injection

examples
- creation of related keys
- encryption of the same plaintext
 under different keys

examples
- ???

Joint SeVeCom meeting, Budapest 74-5 Sept 2006

API attacks

� exploit design weaknesses of the API for extracting
secrets from the module or increasing the efficiency of
cryptanalytical attacks

� simple examples:
� creating related keys:

key_part_import (K’, EMK(K)) � creates K+K’

key_part_import (K’+∆, EMK(K)) � creates K+K’+∆

� key conjuring:
key_import (R, R’) � creates an unknown key DDMK(R’)(R)

� key separation:
key_export (EMK(K), EMK(KEK)) � returns EKEK(K)

decrypt (EMK(KEK), EKEK(K)) � returns K

Joint SeVeCom meeting, Budapest 84-5 Sept 2006

Attacking the API of the IBM 4758

� preliminaries
� keys are stored externally in key tokens
� key tokens are encrypted with a master key or a key

wrapping key (exporting key) modulated with the type of the
key in the token

� types are encoded in control vectors
� example:

� let K be an exportable symmetric data encryption key

� let KEK be a key encryption key

� it is possible to export K under the protection of KEK in a key
token EKEK+CV_DATA(K)

Joint SeVeCom meeting, Budapest 94-5 Sept 2006

Attacking the API of the IBM 4758

� use key_part_import to create two unknown but
related key encryption keys UKEK and UKEK’:

key_part_import (K’, EMK(K), “KEK”)
� creates UKEK = K + K’ : “KEK”
� outputs EMK+CV_KEK(UKEK)

key_part_import (K’ + CV_KEK + CV_DATA, EMK(K), “KEK”)
� creates UKEK’ = K + K’ + CV_KEK + CV_DATA : “KEK”
� outputs EMK+CV_KEK(UKEK’)

UKEK’ = UKEK + CV_KEK + CV_DATA

Joint SeVeCom meeting, Budapest 104-5 Sept 2006

Attacking the API of the IBM 4758

� use key_import to create two copies of an unknown
random key URK with different types:

key_import (R, EMK+CV_KEK(UKEK), “KEK”)
� creates URK = DUKEK+CV_KEK(R) : “KEK”
� outputs EMK+CV_KEK(URK)

key_import (R, EMK+CV_KEK(UKEK’), “DATA”)
� creates URK’ = DUKEK’+CV_DATA(R) : “DATA”
� outputs EMK+CV_DATA(URK’)

URK’ = DUKEK’+CV_DATA(R)
 = DUKEK+CV_KEK+CV_DATA+CV_DATA(R)
 = DUKEK+CV_KEK(R)
 = URK

Joint SeVeCom meeting, Budapest 114-5 Sept 2006

Attacking the API of the IBM 4758

� export URK:“DATA” under URK:“KEK”:

key_export (EMK+CV_DATA(URK), EMK+CV_KEK(URK), “DATA”)
� outputs EURK+CV_DATA(URK) = EURK(URK)
 because CV_DATA = 0

� decrypt EURK(URK) with URK:”DATA”:

decrypt (EMK+CV_DATA(URK), EURK(URK))
� returns URK

� export any target key Ktarget under URK:”KEK”:

key_export (EMK+CV_ANY(Ktarget), EMK+CV_KEK(URK), ANY)
� returns EURK+CV_ANY(Ktarget)

Joint SeVeCom meeting, Budapest 124-5 Sept 2006

PKCS #11

� Cryptographic Token Interface (cryptoki) Standard
� supported by many products including Mozilla and various SSL

hardware accelerators
� among many others, cryptoki includes a key management

interface:
� C_GenerateKey
� C_GenerateKeyPair
� C_WrapKey
� C_UnwrapKey
� C_DeriveKey
� …

� secret key objects have a control vector that specifies the
intended usage
� encrypt / decrypt
� sign / verify (MAC)
� wrap / unwrap

Joint SeVeCom meeting, Budapest 134-5 Sept 2006

Attacking PKCS #11

� key separation attack
� control vector elements can be independently set
� one may insert a key with type “wrap” and “decrypt”
� this key can be used to export and decrypt any exportable

key

� weaker key / algorithm attack
� it is possible to wrap a private key with a weak symmetric key

or using a weak algorithm

� small public exponent with no padding
� symmetric keys can be wrapped with public keys using no

padding (i.e., textbook RSA)
� resulting key token is T = ke mod n
� if ke < n (e < log n / log k), then k = T1/e

� condition satisfied if e = 3, log n = 1024, log k = 128

Joint SeVeCom meeting, Budapest 144-5 Sept 2006

Attacking PKCS #11

� Trojan public key
� public keys are not authenticated
� one can export a target key under a supplied public key for which

she knows the corresponding private key

� Trojan wrapped key
� no authentication for wrapped keys
� one can wrap any key with a known public key and import it into the

device

� private key modification
� private key token contains (n, e, d, p, q, d mod (p-1), d mod (q-1),

q-1 mod p) encoded as a byte string and encrypted in CBC mode
� one modified block in the ciphertext affects only the corresponding

block and the next block in the plaintext
� parameters can be modified
� may be used in fault injection attacks

Joint SeVeCom meeting, Budapest 154-5 Sept 2006

Lessons learnt

� no matter how secure the device is physically if it
leaks secrets due to API attacks

� most tamper resistant devices are vulnerable to some
form of API attacks

� careful design and analysis of the API is indeed very
important with respect to overall security

Joint SeVeCom meeting, Budapest 164-5 Sept 2006

Security analysis of APIs

� API attacks can be very subtle and hard to discover
by informal analysis

� the problem of API analysis seems to be very similar
to that of analyzing authentication and key exchange
protocols
� the attacker interacts with the device using a well defined set

of “messages”
� the goal is to obtain some secret or bring the device in a “bad”

state

� formal analysis techniques developed for key
exchange protocols may be amenable to the analysis
of crypto APIs

Joint SeVeCom meeting, Budapest 174-5 Sept 2006

References

� Mike Bond. Attacks on Cryptoprocessor Transaction Sets. CHES
2001.

� Jolyon Clulow. The design and analysis of cryptographic application
programming interfaces for security devices. Master’s thesis,
University of Natal, Durban, 2003.

� Jolyon Clulow. On the Security of PKCS #11. CHES 2003.

� Mike Bond, Jolyon Clulow. Extending Security Protocol Analysis :
New Challenges. ARSPA 2004.

