

Network on Wheels (NoW)

Security Architecture Implementing the Security Architecture - a Network Perspective

Matthias Gerlach (FhI FOKUS) gerlach@fokus.fraunhofer.de

Andreas Festag (NEC) *festag@netlab.nec.de*

1st C2C CC Security Workshop, Berlin

Threats Overview

- Major threat classes:
 - Privacy violations
 - Track node
 - Identify user
 - Recognize user
 - Denial of service
 - Disrupt communication
 - Disable sensors
 - Disable processing
 - Disable transceiver
 - Insertion of false data
 - Spoof sensor data
 - Manipulate vehicle bus
 - Fake node (Sybil Attack)
 - Replay node

- Protection:
 - Preventive measures, e.g.
 PKI, closed system
 - Reactive measures, e.g. plausibility checks, intrusion detection, and revocation
 - Pseudonymity
- Security Toolbox
 - Cryptography
 - Non-cryptographic means, reasoning, ...
 - Tamper resistant hardware, ...
 - etc.

Specifying a Security Architecture

Problem

- An architecture comprises many different aspects
- We have different stakeholders
- Many people look at architecture differently

Stakeholders

- Application developers
- Communication system developers
- Security system developers
- Researchers

- Requirements for the NoW security architecture
 - Integration into existing system architecture
 - Support for basic applications
 - Modularity, upgradeability
 - Ease of use for application developers
 - Algorithm-independent for
 - Expandability
 - Integration of different solution algorithms by different partners

Solution: We propose different views

- Functional layers view: what different functionalities are necessary. Components of the security system
- Organizational view: which organizations / entities are necessary, e.g. Certification Authorities
- Reference model view: communication centric view, we extend the C2C CC reference architecture
- Information centric view: how is security information provided and processed in the local node (e.g. vehicle)

- Every layer relies on the functionality of the underlying one(s)
- Each layer has its own challenges
- Layers may span infrastructure and the local node's system

Data assessment and intrusion handling	
Revocation	///7
Pseudonyms	
Test and Certification	
Registration	

• These layers comprise the functionality of a security system

Architecture -Entities

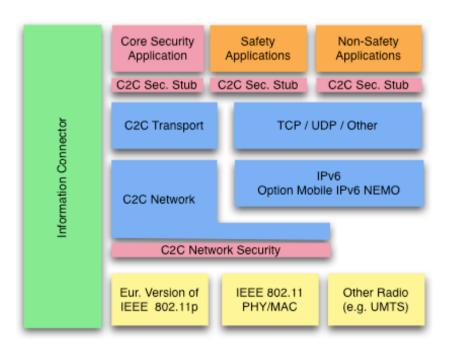
RegistrationEntity

- Registers the node with appropriate authorities
- Yields the acquirer name to node mapping

CertificationEntity

- Certifies that a node is valid and well-functioning (conform to protocols)
- Yields network-certified nodes

PseudonymEntity


- Provides valid pseudonyms
- Basis for anonymous communication

RevocationEntity

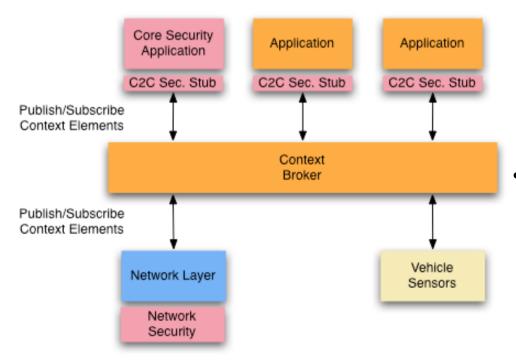
- Revoke malicious nodes
- Has the authority to escrow pseudonyms to the identifier of the node (anonymity escrow)
- Node an OBU or RSU
 - Interfaces to registration, pseudonym, revocation
 - Uses valid pseudonyms for communication
 - Local components to assess data

Architecture -Reference Model View

- Based on C2C CC Architecture
- Focus on applications that use vehicular specific data
- There may be also application specific security solutions

- Core Security Application:
 - Location privacy protection, confidence tagging, pseudonym assignment

C2C Security Stub:


 Trust evaluation and filtering based on confidence tags

C2C Network Security:

 End-to-end and hop-by-hop securing of data, tagging of neighborhood table

Architecture -Information Centric View

- Local information flow
- Open issue: how information is organized / addressed on the local node

- Applications use and provide ContextElements
- Context Broker provides publish/ subscribe access and organizes access to information
- Core security application
 - Amends ContextElements with a confidence value (*"Tag"*)
 - Uses context information to protect the privacy of users (context aware changing of pseudonyms - "Context mix")
 - Security stub can be configured by application
 - Allow different security levels

Context Broker

Applications can access data (e.g. neighborhood table) using a standardized interface

Confidence Tags and Security Stubs

- Confidence: (a value in the range between 0..1 expressing the confidence in a piece of information)
- Confidence can be built upon certificates (propose to use the WAVE / 1609.2 certificate structure) and plausibility checks
- Security stub implements the reasoning / thresholds for filtering information.
- The Core Security Application (and possible extensions):
 - Assess confidence in the correctness of the data and "tag" it. Support different algorithms in parallel
 - Communication system also provides tags (such as the network layer)
 - Pseudonym refresh and change algorithms

Network on Wheels (NoW)

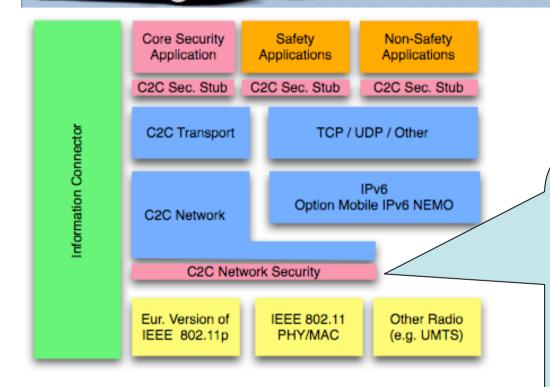
Security Architecture

Implementing the Security Architecture - a Network Perspective

Matthias Gerlach (FhI FOKUS) gerlach@fokus.fraunhofer.de


Andreas Festag (NEC) *festag@netlab.nec.de*

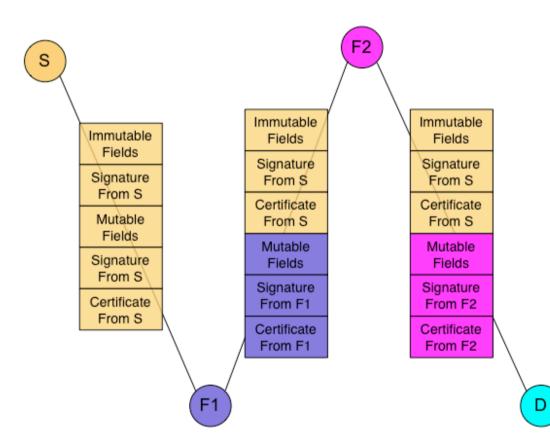
Specific Attacks on Communication System



- Use of geographic positions for information dissemination
- Security: two exemplary attacks (see below)
 - (1) Sinkhole, (2) routing loop
 - Without security an attacker can easily disrupt communication

- Privacy: example attacks
 - Use beacon information to trace node
 - Use frequent location queries to track node
- What's the tradeoff between security (identifier stability) and privacy (pseudonymity)?

Network Security Mechanisms

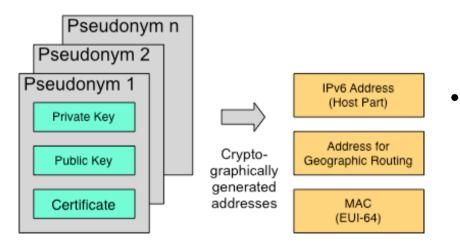


Main mechanisms C2C network security

- Digital signatures and certificates
- Mutable and immutable fields protection
- Pseudonyms
- Plausibility checks
- Local reputation

Secure geographical routing

Packets are signed


- Immutable fields by sender S
- Mutable fields by current forwarder

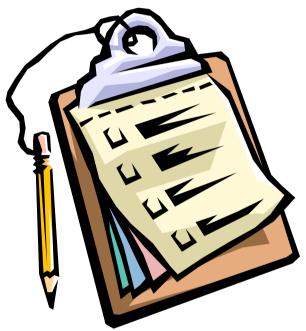
Advantages:

- Forwarding only by certified nodes
- Authentication of source and forwarders
- Integrity of data messages
- Non-repudiation

- Pseudonymity
 - Randomly chosen and changing identifiers
 - Aggravates tracking of nodes
 - Pseudonyms are certified

Setting of pseudonyms is controlled by Core Security Application

- Features
 - Multi-layer addressing
 - Enhanced packet forwarding scheme to minimize affect on routing
 - Pseudonym resolution service
 - Performance issues
- Pseudonym Change
 - Based on simple time interval
 - Alternative: based on context information to increase anonymity (*Context mix*)


- Two main methods for plausibility checks
 - Received information is trustable if more than one node distributes similar information → on application layer
 - 2. Heuristics to check values (position, speed, heading)

➔ Can be applied in communication system (Core security application may implement additional checks)

- Local reputation system
 - Network layer maintains confidence value per nodes in local data structure
 - Can be accessed by applications through information connector
 - For received information confidence is determined based on trust value and plausibility checks
 - Network layer tags message with confidence value and passes it to application domain (security stubs)

- Proposed approach for network security attempts to combine security and privacy at reasonable costs and security compromises
- Main elements are currently implemented in demonstrator of project *NoW - Network on Wheels* as proof-of-concept and experimental platform

Proposals

- Architecture description Views: Functional layers, organizational, ...
- Main ideas: Core security app, confidence tags, security stubs, and context mix
- Mechanisms for network security: Digital signatures and certificates, mutable and immutable fields protection, pseudonym support, plausibility checks, local reputation