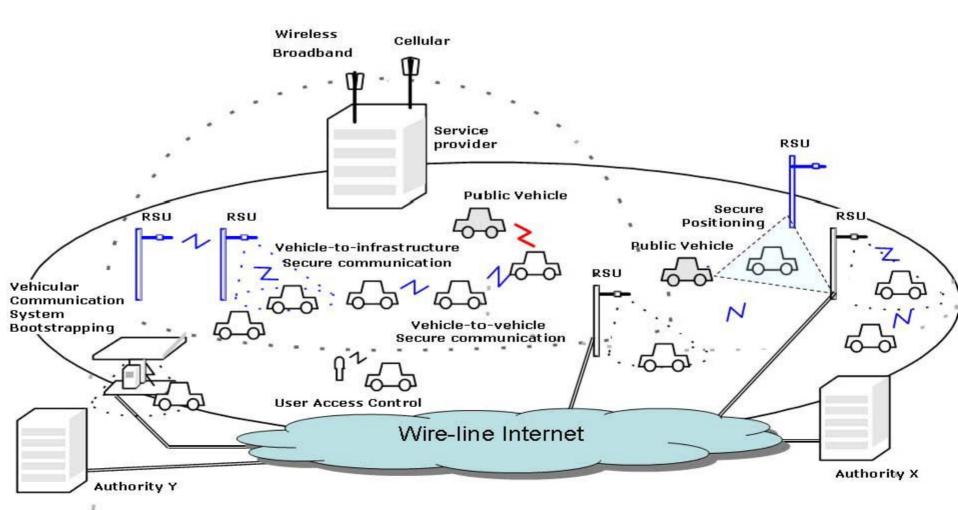
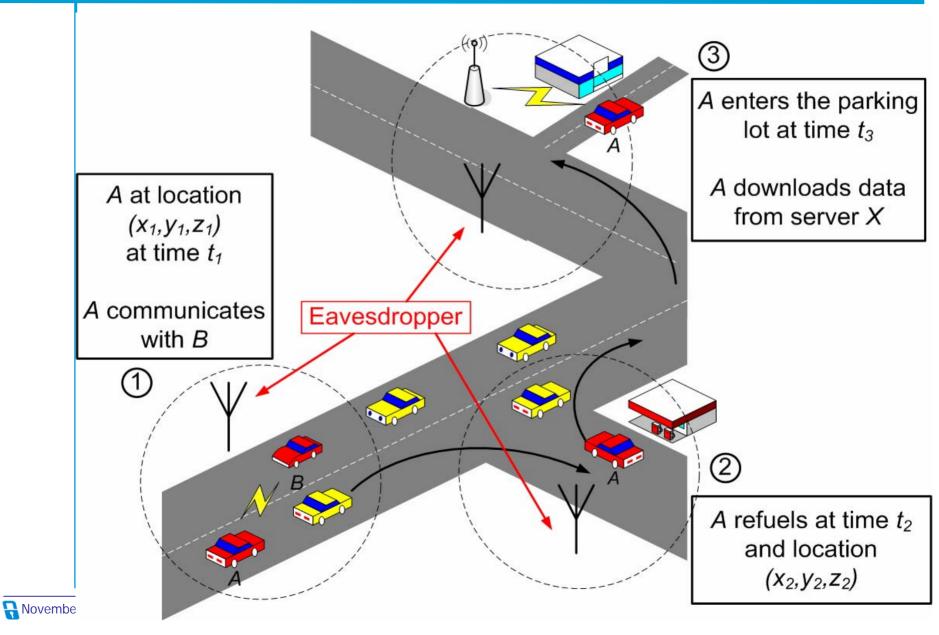
Secure Vehicular Communications

Privacy and Identity Management


in Secure Vehicular Communication (VC) Systems

Panos Papadimitratos panos.papadimitratos@epfl.ch



Secure VC Architecture Overview An Illustration

SEVECOM

Exploit: Vehicle and User Tracking SEVECOM

Pre-VC Transportation Systems **SEVEC**

- Administered by public organizations
 - City, County, State Authorities
- Participants
 - Vehicles
 - Drivers

Rigid identity management processes

Liability

(cont'd)

Drivers and vehicles already identified in multiple ways

- Drivers
 - Name
 - License number
 - Mailing address
 - Date of birth
- Vehicles
 - Vehicle identification number (VIN)
 - Registration number
 - Technical information
 - Туре
 - Model
 - Color

Secure Vehicular Communication Systems

- System participants
 - Users
 - Network nodes
 - Roadside infrastructure
 - Vehicles; private, public
 - Authorities
 - Servers at the wire-line part of the network
 - Infrastructure acting as a gateway to/from the wireless part of the vehicular network
- Focus on network operation and device communication
- Binding users to vehicles is an important issue
 - Many-to-many relationship

Secure Vehicular Communication

Systems (cont'd)

Relation between "physical" and VC identities

- Integration Adaptation
- Extension
- VC system identity
 - "Physical world" attributes
 - Network identifiers
 - At different layers of the protocol stack
 - Service identifiers/credentials
 - Cryptographic keys and credentials

Problem statement

- Secure vehicular communication systems
 - Identity management
 - Privacy protection
 - Anonymity
- Why?
 - VC systems may facilitate antisocial behavior
 - Attackers will always be present
 - User requirement
 - Deployment violating rights of individuals

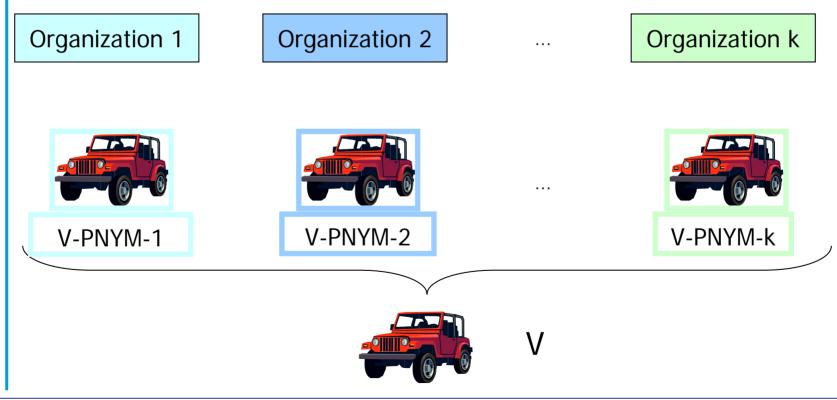
Challenge

- Are available privacy-enhancing technologies appropriate for the vehicular communications environment?
- Security is at odds with privacy
 - Not only due to the need for liability attribution,

Approach 1:

- Protect sensitive data
- Define processes and policies for privacy protection
- Minimum private information disclosure on a needbasis only
- Fine-grained control mechanisms for system entities to regulate private information disclosure

Towards VC Privacy (cont'd)


But authentication implies identification

- Cryptographic keys and credentials are necessary
- Credentials, i.e., certificates, identify their subjects
- Examples
 - Service access
 - Area access control

Towards VC Privacy (cont'd)

Approach 2:

 Partitioning of identity into multiple partial identities (pseudonyms) each associated with a subset of attributes

SEVEC

Approach 3:

- Remove all identifying information from the credentials
- Introduction of the "pseudonym" concept
 - D. Chaum, "Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms," Comm. ACM 1981
 - D. Chaum, "Security without identification: Transactions to make big brother obsolete," Comm. ACM 1985
- Many other pseudonymous/anonymous schemes with diverse characteristics followed
- Recently, application in VC contemplated by many research efforts, e.g., NoW, UUIm, EPFL

Towards VC Privacy (cont'd)

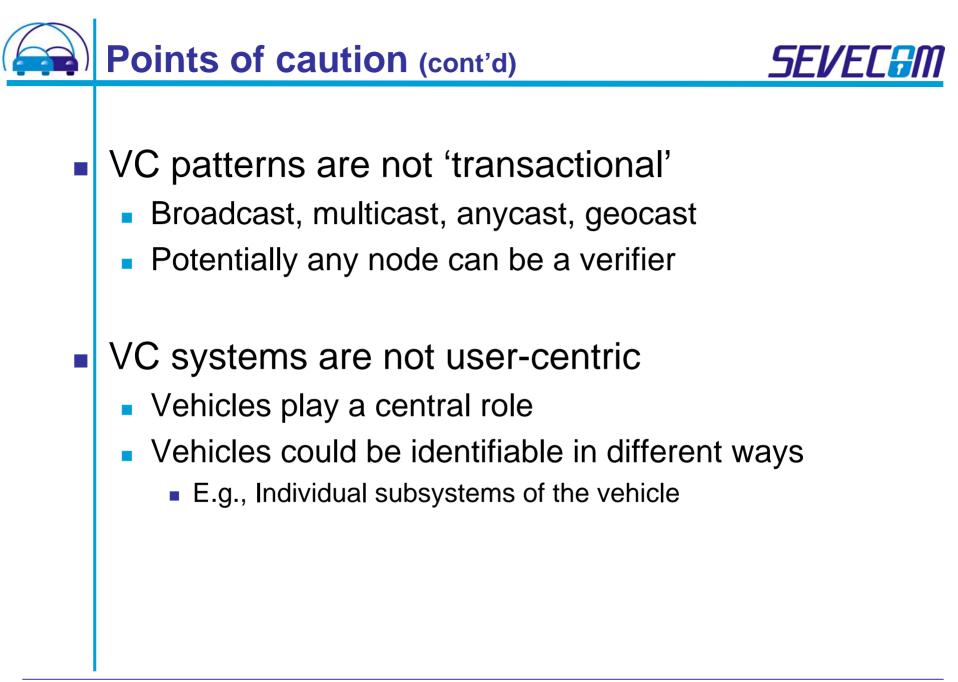
Approach 4:

- Certification authority (CA)
 - Long-term basic unique identities
- Anonymous/Pseudonymous credential issuer(s)

Accountability

- Resolution of pseudonyms/anonymous credentials to long-term identities
- Well-defined policies on the conditions that warrant (anonymity) revocation
- Separation of privilege

Sharing of credentials


- Node/user A should <u>not</u> be able to use pseudonyms/anonymous credentials issued to node/user B
- Credential forgery
 - One or more users should <u>not</u> be able to forge pseudonyms/anonymous credentials

Pseudonym linking

- Any observer of communication (transactions) should <u>not</u> be able to link pseudonyms/anonymous credentials issued by distinct organizations
- Any two or more organizations should <u>not</u> be able to link pseudonyms they issued to the same node/user

- Pseudonymity/anonymity cloak enables attacks
 - Attackers can inject misleading data
 - If anonymous, attackers can inject a <u>large</u> volume of false data
 - Unless an appropriate defense mechanism is implemented, such an attack can remain <u>undetected</u> for a long period of time

- Communication cannot be regulated or controlled by the node/user
 - Safety messaging and applications will be 'alwayson'
- Frequent/high-rate/continuous communication
 - Dependent on network characteristics (e.g., density)
- Performance overhead can be critical
 - Even though anonymity is a prerequisite for private vehicles only
 - Infrastructure and public vehicles do not need to be anonymous

- Unlinkability at the network and data link layers
 - Impact on system performance
- Eliminate 'weak links'
 - Coexistence/inter-operability with other wireless communication systems, e.g., cellular, WiMax

- We have been developing a solution based on well-accepted building blocks (e.g., cryptographic primitives) and concepts (e.g., anonymized certificates/pseudonyms)
- At the same time
 - Established a liaison with the PRIME project
 - Collaborating with IBM, exploring additional research issues and future solutions

Conclusions

- Within VC, privacy and identity management are largely open problems
 - VC systems have unique characteristics; not just another mobile wireless communication technology to access the Internet
- Assumptions and requirements for identity
 management and privacy can strongly influence
 the overall architecture of VC systems