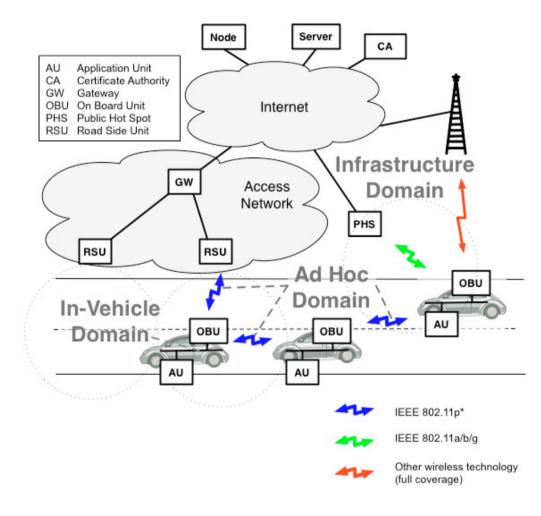


Building Blocks for VANET Security

F. Armknecht, A. Festag, A. Hessler, O. Ugus, D. Westhoff, K. Zeng

1) Cross-layer privacy enhancement and non-repudiation in vehicular communication


2) Roadside WSNs for Traffic Forensic

<u>Part I</u> Cross-layer privacy enhancement and non-repudiation in vehicular communication

Intervehicular communication

Scenario:

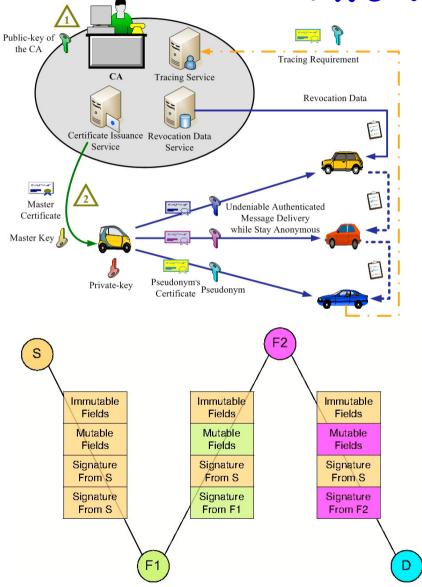
Vehicles form with road side units a communication network

Goals:

- Improve traffic quality and safety
- Safety messages may warn about accidents, bad road quality, etc.

Security risks:

- Bogus information might cause damage
- Privacy might be compromised if identity is not protected during communication


Solution:

Sign messages with pseudonyms

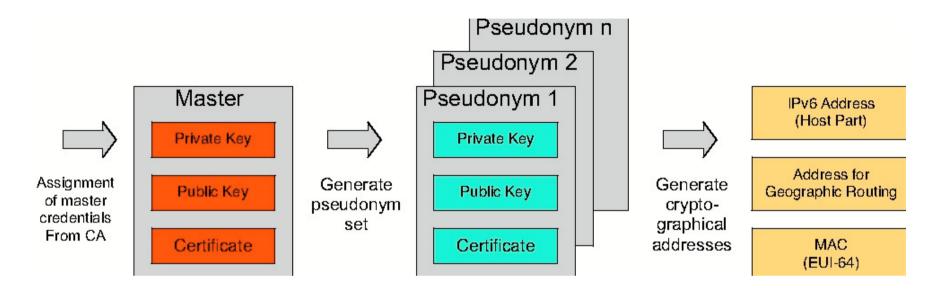
<u>Non-repudiation vs. Anonymity</u>

- Trade-off between non-repudiation and anonymity
 - Anonymity can be achieved by the use of pseudonyms
 - Non-repudiation "requires" a digital message signature, and thus makes the pseudonyms useless (an attacker is able to track a certain vehicle by analyzing the digital signature of the messages)
- Cross-layer issue
 - Both non-repudiation and anonymity are only useful if ensured on *every* protocol layer

Two methods...

PKI+:

[Zen06]


Public key infrastructure with additional advantages

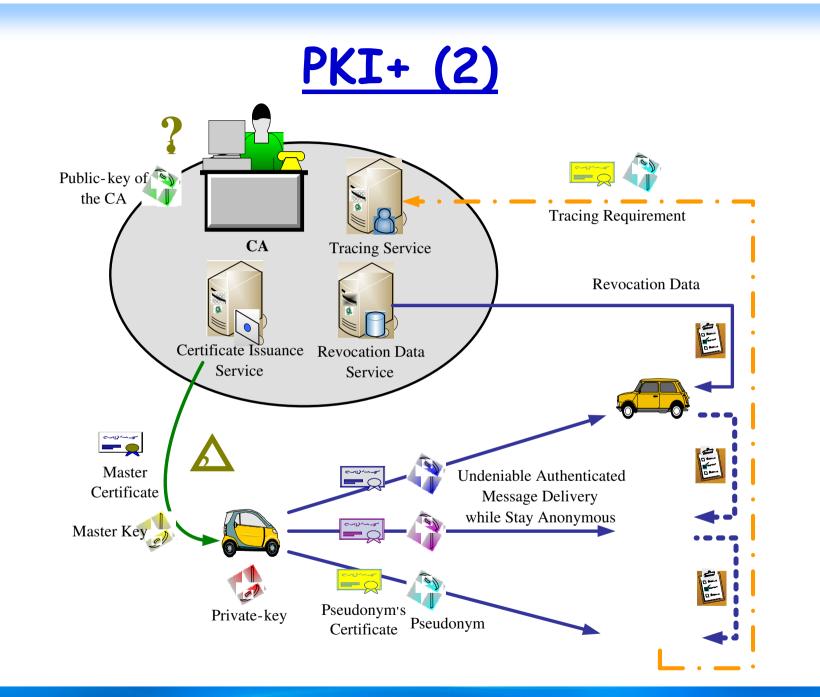
- Provides keys and certificates for signing
- User can create own pseudonyms
- Revocation data is comparatively small

Secure geographical routing: [Har 07]

- Messages are signed (immutable fields by sender S, mutable fields by current forwarder)
- Advantages:
 - Forwarded only by certified nodes
 - Authentication, integrity, nonrepudiation

... one solution

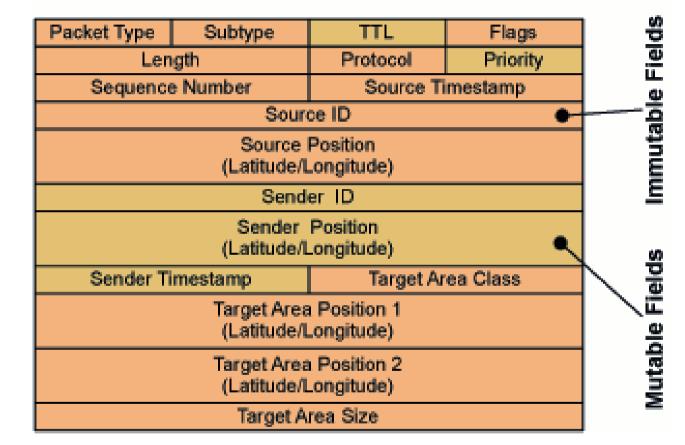
Combined security architecture: PKI+ and secure geographical routing:


- Master information from the certified authority enables user to create pseudonyms
- Pseudonyms are simultaneously used on different layers to provide nonrepudiation and support privacy on all layers at the same time

Empowered by Innovation NE(

<u>PKI+ (1)</u>

- Retains concept of PKI plus some additional features
- User can autonomously generate practically infinite number of pseudonyms with appropriate certificates
- Makes use of non-super-singular elliptic curve that supports bilinear mapping
- 5 stages:
 - CA setup (offline)
 - User enroll (offline)
 - Authentication
 - Tracing
 - Revocation



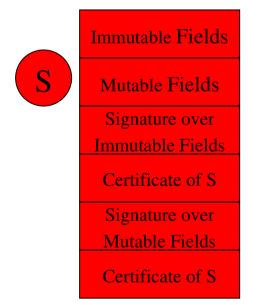
PKI+ (3): Main Benefits

- Protect Individual Privacy
 - Each user is equipped with mass pseudonyms (public-keys) and certificates
 - Efficient in terms of the size of certificate (680b) and the time to verify the certificate
- Protect System Safety
 - Authority can trace and revoke misbehaved user
 - As efficient as conventional public-key technology for signing messages online
 - Size of revocation data per revoked user is minimized (1.367b)
- Reduce Certification Authority Workload
 - Public-keys and certificates are NOT generated by the authority
 - Authority is largely offloaded from revocation

Secure Routing

Geo-Broadcast Packet

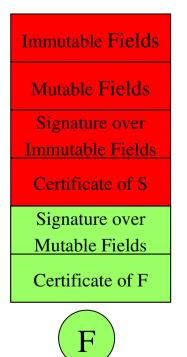
Immutable fields: not changed by forwarders


<u>Mutable fields</u>: updated during forwarding

October 2007 - 11

Secure routing: Source

- Generate one signature over the immutable fields
- Generate another signature over the mutable fields



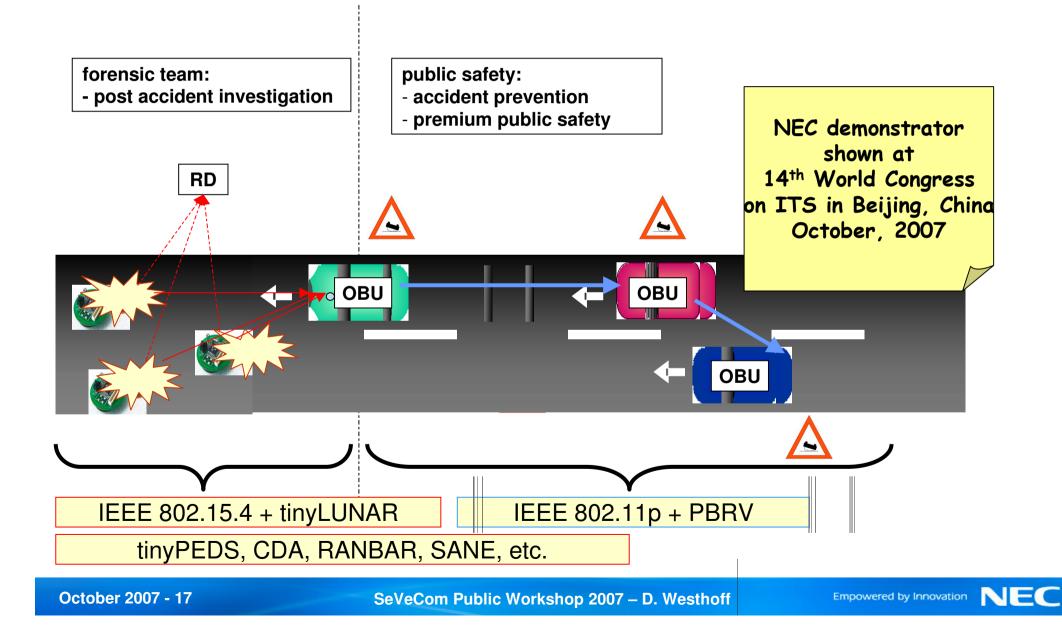
Secure routing: Source

- Verify timestamps and plausibility of position information
- Verify both signatures
- Update location table
- Verify if S does not exceed maximal allowed sending rate
- Replace mutable fields signature

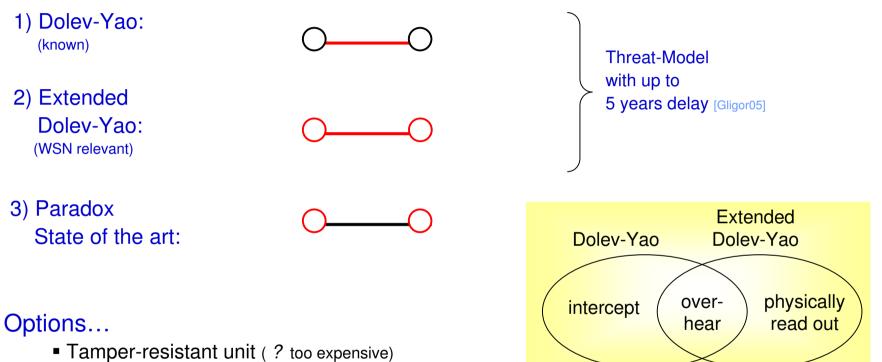
Secure routing: Source

- Verify timestamps and plausibility of position information
- Verify both signatures
- Update location table
- Remove signatures and send to application

Conclusions


- Goals of intervehicular communication: improve traffic security and efficiency
- Anonymity and non-repudiation are mandatory for the user's acceptance of intervehicular communication
- Only effective if ensured over all protocol layers
- Our proposal: use PKI+ and digital signatures on every layer
- Secure routing through digital signatures, plausibility checks, and robustness mechanisms

<u>Part II</u> <u>Roadside WSNs...</u>


October 2007 - 16

WSN Roadside to Vehicular...

WSN adapted Threat Model...

"Probabilistic" security (? attacker receives only limited gain)

October 2007 - 18

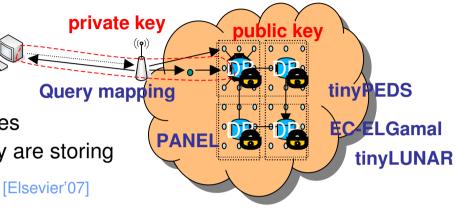
SeVeCom Public Workshop 2007 – D. Westhoff

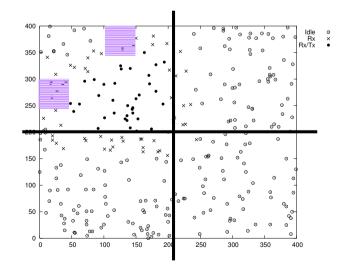
Empowered by Innovation NEC

Objectives

- long term data storage of the region's "environmental fingerprint"
- minimized transmission costs
- storage space balanced over multiple sensor nodes
- sensor nodes know the region NOT the value they are storing

Approach


- first approach for *encrypted distributed data storage for WSNs*
- hybrid approach uses symmetric and asymmetric PHs


symmetric PH:
$$a_1 + a_2 = D_k [E_k (a_1) + E_k (a_2)]$$
 [Mobiquitous

s'051

asymmetric PH: $a_1 + a_2 = D_q [E_p(a_1) + E_p(a_2)]$ [ICC'06]

- efficient linkage from "database guery" to "controlled flooding message"
- restoring rules of remaining guarters in case of a disaster
- Optional: Overlapping WSNs: WSN_{PH} and WSN_{OPES[WiOpt'05]}

Asymmetric PH: EC-ElGamal

- Private key: x∈GF(p)
 Public key: E, p, G, Y (E of order n) whereby Y=xG and E over GF(p) with G, Y∈E
- **Encryption:** plaintext $m \in [0, p-1]$, random $r \in [1, n-1]$,

M = map(m)C=enc(m) = (R, S) = (rG, M+rY)

• Decryption:

M=dec(C)=dec(R, S)=-xR+S $m=rmap(M) \leftarrow ECDLP!!$

(brute force at sink node)

Mapping function:

from multiplicative to additive homomorphic map $(a_1+a_2) = (a_1+a_2)G = a_1G + a_2G$

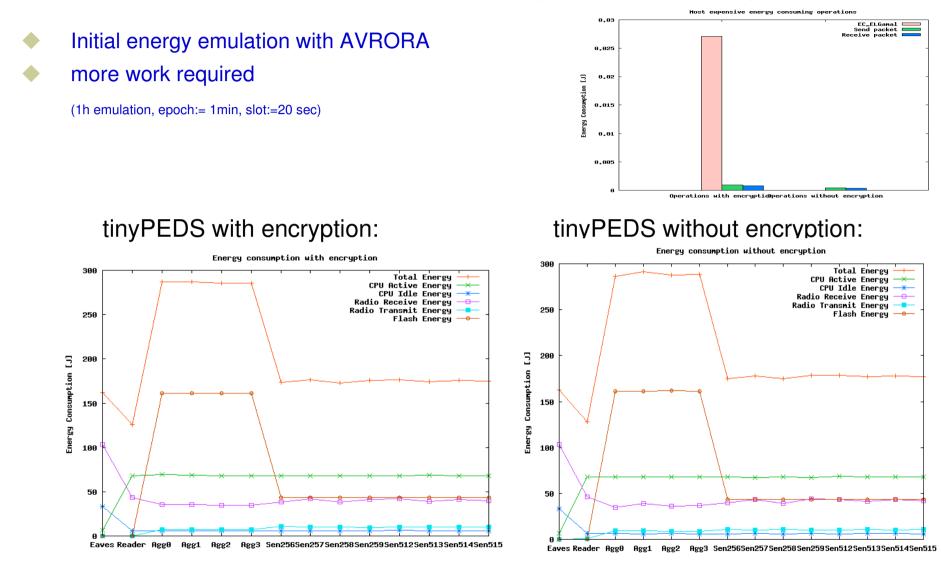
 $= \max(a_1) + \max(a_2)$

[Asiacrypt'00]

Design Architecture

application level	additively homomorphic ECEG	(nes)C
elliptic curve Arithmetik**	k*P, 2*P, P+C	(1100)0
finite field Arithmetik*	(a+b, a*b,) mod P)	assembler

Implementation Results on MicaZ


#Pr points	Ex. Time [sec]	Code size [bytes]	Memory size [bytes]
0	2.52	2790	320
0	2.14	3162	561
2	1.4	3996	621
4	1.17	6158	683
Ciphertext size: 2(p+1), e.g. 328bit. 07]			

[MobiCom'07]

**multiplication: interleave method, signMOF *pseudo-Mresenne prime reduction

AVRORA: Energy Consumption

Publications...

PKI+

F. Armknecht, A. Festag, D. Westhoff, K. Zeng **Cross-layer Privacy Enhancement and Non-repudiation in Vehicular Communication**, KIVS WMAN, Bern, Swiss, February 2007.

K. Zeng **Pseudonymous PKI for Ubiquitous Computing**, EuroPKI, pp.207-222, Turin, Italy, 2006.

Roadside WSN

J. Girao, D. Westhoff, E. Mykletun and T. Araki **TinyPEDS: Tiny Persistent Encrypted Data Storage in Asynchronous Wireless Sensor Networks**, Elsevier Ad Hoc Networks Journal, Vol. 5, Issue 7, pp. 1073-1089, September 2007.

• Hessler, J.M. Bohli, O. Ugus, D. Westhoff Secure and Resilient WSN Roadside Architecture for Intelligent Transport Systems, under submission

O. Ugus, A. Hessler, D. Westhoff **Performance of Additive Homomorphic EC-ELGamal Encryption for TinyPEDS**, 6te Fachgespräch Sensornetze der GI/ITG-Fachgruppe Kommunikation und Verteilte Systeme, Technischer Bericht der RWTH Aachen ISSN 0935-3232, Germany, July, 2007.