

- Vehicle Communication
- Security and Privacy Threats
- Research topics
- Preliminary results

- Large projects have explored and will explore vehicular communications
 - Fleetnet, NOW, CVIS, Safespot, Coopers, ...
 - But no solution can be deployed if not properly secured
- Problems and Opportunities
 - A real setting with real scenarios and applications
 - Very dynamic network with high speeds and real-time constraints
 - Real-world constraints, e.g. who will pay for CA?
 - No energy constraints
 - Contradictory expectations (e.g. position vs. privacy)
- SEVECOM will focus on:
 - Identification of threats against the communication system, transferred data, and the vehicle itself
 - Specification of a usable security architecture
 - The definition of suitable cryptographic primitives

SE-cure VE-hicle COM-munication

- Mission:
 future-proof solution to the problem of V2V/V2I security
- IST STREP Project. 1/1/2006-1/1/2009
- Partners
 - Trialog (Coordinator)
 - DaimlerChrysler
 - Centro Ricerche Fiat
 - Philips
 - Ecole Polytechnique Fédéral de Lausanne
 - University of Ulm
 - Budapest University of Technology and Economics

DAIMLERCHRYSLER

	Торіс	Scope of work
A1	Key and identity management	Fully addressed
A2	ure communication protocols (inc. secure routing) Fully addressed	
A3	Tamper proof device and decision on cryptosystem	Fully addressed
A4	Intrusion Detection	Investigation work
A 5	Data consistency	Investigation work
A6	Privacy	Fully addressed
A7	Secure positioning	Investigation work
A 8	Secure user interface	Investigation work

- V2V / V2I communication
 - should not make it easier to identify or track vehicles
 - should conform to future privacy directives
- Lack of privacy control will prevent deployment
 - Active safety applications require knowledge on activities of nearby vehicles, not their identity
 - Automotive safety has similar privacy requirements as electronic money
 - Privacy-enhancement mechanisms that use resolvable pseudonyms

- WP1: Requirements
- WP2: Architecture and Security Mechanisms Specification
- WP3: Focused Development and Integration into Selected Infrastructure
- WP4: Integration in Use Cases
- WP5: Approaches for Security Evaluation
- WP6: Liaison, Dissemination and Exploitation
- WP7: Project Management

- Analyzed properties and security requirements of 56 potential applications
- Selected 10 representative applications using cluster analysis techniques
- Described ~30 different attacks on these applications
- Derived needed security mechanisms to prevent these attacks, e.g.
 - Authentication, location verification, resolvable anonymity, consistency checking, tamper-resistant communication system,

- Design an architecture that is
 - modular
 - flexible
 - dynamically configurable at runtime
 - to adapt to the needs of different applications
- Integrate with application solutions by other projects
 - CVIS
 - Safespot
 - Coopers

SEVECOM is a Transversal Project

General information	www.sevecom.org	info@sevecom.org
Budapest University of	Levante Buttyan	+36 1 463 1803
Technology & Economics		buttyan@crysys.hu
DaimlerChrysler	Rainer Kroh	+49 731 505 2862
		rainer.kroh@daimlerchrysler.com
Ecole Polytechnique	Jean-Pierre Hubaux	+41 21 693 26 27
Fédérale de Lausanne		jean-pierre.hubaux@epfl.ch
Fiat Research Center	Stefano Cosenza	+39 011 90 83076
(CRF)		stefano.cosenza@crf.it
Philips	Hans-Jürgen Reumerman	+49 241 6003 629
		hans-j.reumerman@phililps.com
TRIALOG	Antonio Kung	+33 144 70 61 03
		antonio.kung@trialog.com
Ulm University	Frank Kargl	+49 731 50 31310
		frank.kargl@uni-ulm.de

