Secure Vehicle Communication

SEVECOM Support for Privacy

Gijs Withagen (Technolution), on behalf of Antonio Kung (Trialog) 25 rue du Général Foy 75008 Paris, France

SE-cure VE-hicle COM-munication

- Mission: future-proof solution to the problem of V2V/V2I security
- Partners
 - Trialog (Coordinator)
 - DaimlerChrysler
 - Centro Ricerche Fiat
 - Philips
 - Ecole Polytechnique Fédéral de Lausanne
 - University of Ulm
 - Budapest University of Technology and Economics

DAIMLERCHRYSLER

	Торіс	Scope of work
A1	Key and identity management	Fully addressed
A2	Secure communication protocols (inc. secure routing)	Fully addressed
A3	Tamper proof device and decision on cryptosystem	Fully addressed
A4	Intrusion Detection	Investigation work
A5	Data consistency	Investigation work
A 6	Privacy	Fully addressed
A7	Secure positioning	Investigation work
A 8	Secure user interface	Investigation work

- V2V / V2I communication
 - should not make it easier to identify or track vehicles
 - should conform to future privacy directives
- Lack of privacy control will prevent deployment
 - safety applications require information from nearby vehicles, not their identity
 - ➔ Privacy-enhancement mechanisms that use resolvable pseudonyms

) Security Baseline Architecture (cont'd)

Objectives

- Focus on communication
- Baseline Privacy Enhancing Technology (PET)
- Future dynamic deployment of stronger PETs
 - Analogy: switching from 8 to 10 digit telephone numbers

Baseline solution design approach

- Standardized cryptographic primitives
- Easy-to-implement
- Low overhead
- Adaptable protection

Security Baseline Architecture (cont'd)

Challenges

- High rate broadcast communication
- VANET-only (e.g., safety) and TCP/IP communication

Security Baseline Architecture (cont'd)

- Basic ideas (cont'd)
 - **Pseudonym**: Remove all identifying information from certificate
 - Equip vehicles with multiple pseudonyms
 - Alternate among pseudonyms over time (and space)
 - Sign message with the private key corresponding to pseudonym
 - Append current pseudonym to signed message

Security Baseline Architecture (cont'd)

- Pseudonym changes over space/time (« region »)
 - identity of a vehicle in a region unknown
 - space size/time duration is a parameter
 - cannot track a vehicle from one region to another
- Service providers can still track a given customer
 - e.g. through a fixed IP V6 address
 - secure tunnel on top of changing pseudonyms and addresses

Security Baseline Architecture (cont'd) SEVECOM System setup (cont'd) Multiple pseudonym providers **Organization 1** Organization 2 Organization n . . . V-PNYM-2 V-PNYM-n V-PNYM-1 Vehicle V

Pseudonym format

PSNYM-Provider ID	PSNYM Lifetime		
Public Key			
PSNYM-Provider Signature			

- Supplying vehicles with pseudonyms
 - Sufficient in number
 - Periodic 'refills'

Privacy Baseline Architecture (cont'd)

- Other vehicle network identifiers: e.g., IP and MAC addresses
- Change addresses along with pseudonyms
- Maintain addresses only when necessary, but encapsulate

Privacy Baseline Architecture (cont'd)

- Baseline Solution
 - Well-accepted building blocks (e.g., cryptographic primitives) and concepts (e.g., anonymized certificates/pseudonyms)
 - Adaptation to enhance protection
- Investigation of alternative techniques
 - 'Newer' cryptography
- Flexible Security Architecture
 - Plug-in stronger privacy enhancing technology

Coordination and Implementation

- Discussion with CVIS
 - Psnym change management specification
 - Need for meeting
- Reuse of CVIS reference platform
 - Need for contact point
- Reuse of GST SEC Secure communication engine

Secure Vehicle Communication

